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"S T AIRCASE" N¶ITHODS OF SENSITIVITY TESTING

1*Sumxure.ra

In this report we are concerned with a class of methods used for determining,

on the basis of a number of trials; the level of severity at which a fixed per-

centage of samples of a particular ex-losive will explode. A general discussion of

the problems of sensitivity testing is given in Sections 2, 3, and 4. The methods

considered can be broadly defined as follows:

"c.s .. , A n• . dA i s E1 method where the
severity of the next trial or group of trials
is direutly determined by the results of the
last trial or group of trials.

Beyon-d the fact that all the methods considered in this report are "staircase", we

may further classify them as:

(i). Methods which have not been used before, such as the Single Explosion

plus m Trials Methods, the Cascade Methods and the Sequential Method.

(ii). Methods which have been used before, but for which an adequate analysis

has not been available, such as the Naval Powder Factory and the Pica-

tinny Methods.

(iii). Methods which have been used before with an adequate analysis, such as

the Up and Down Method.'

In general, these methods (with the exception of the Up and Down) require a vary-

ing number of trials. Consequently they car. best be applied when

(i). trials are to be made one after another,

(ii). the result of a trial is immediately available, and

(iii). changes in severity are easy to make.

The operation of each method on a particular sensitivity curve can be sum-

marized by four numbers, rneTely, the percentage point estimated on the average, the

variance of the estimated percentage pcilnt, the average nwbercf trials reure

* 'Statlstical Analysis for a .ew Proceczre ir Sensitivity &cerimezuu, --

ton Univers'tt StatistIc al Research 1rcuc. Recort No. t£ .R of .bh Ar'Lied

MathematIcs Pa-nel. ZCC, uU, -.



for one decermntation !f tie per centtage point and the average nmber ee exp-li.-n.

required far one such determfnatitn. Far• the methods discussed in this remzr:,

these quantities have been conuved -"er"cally, a it-at the ret h.

between the level 3f severity end the per cerme.p_ zssos zar_ be representec hC a

cumulative normal curve. The resulsts of these coMFu-taticns are s-unrarized Zn the

Technical Part while the details of the c......t... ..are exla.ned iir the Comuta-

t ional Part.

T th• T-iq if these comDutations, we have Riven in Section 5 a list of

seven recommended methods, each method being accompanied by an operating procedure

and an appropriate analy)sis of results. These recommended methods, taken singly or

in groups, can be used to estimate the 10 per cent, 50 per cent or 90 per cent points

v.,ith certain minimum properties. Thus xwe can choose a method to estimate the 10 per

cent point which has one of the following four properties:

(i). Uses a minimum number of trials,

(ii). Uses a minumum number of explosions,

(iii). Minimizes the assumption of normality, or

(iv). Attempts to minimize both the number of trials and the assumption of

normality (and, therefore, usually minimizes neither).

Complete recommendations are summarized in Table I.

Section 6 gives an estimate of the degree of improvement w:•hich one might ex-

pect to obtain by future research in "staircase" methods while Section 15 points out

certain obvious directicns in which this research might proceed.



I. GENERAL

2. Introduction.

The term "sensitivity test" is comonly applied to tests in which an in-

creasing percentage of individuals fail, die or explode as the severity of the

test is increased. In this report we shall always speak of a sample of explosive

as either exploding or failing to explode when it is subjected to a certain severity

test. Partial explosions are to be c •asslficd as explosion- or non-explosions ac-

cording to any fixed rule. However, it should be understood that the results apply

equally well to situations where individuals either die or fail to die when sub-

jected to a certain severity, test. In the first instance the severity test is

usually a weight being dropped from a specified height, while in the second it ma•y

consist of the administration of a specified dose of a drug to an experimental ani-

mal. The problem of designing and analyzing such tests is a statistical one, since

the determination of a percentage by repeated tests is a statistical one. If the

test is properly conducted, the sample tested gives a fair representation of the

explosive being studied, but this does not mean that the observed fraction of 6;x-

plosions is equal to the true fraction in question. The present report considers

a particular group of experimental designs, determining effective and complete

methods of analysis for a selected few and comparing their efficiency on several

bases.

The aim of a sensitivity test is to provide estimates of one or more nwmbers

which describe the way in which the percentage "exploding" increases with the level

of severity of the test. The choice of quantities to be estimated normally in-

volves striking a balance between what is desired and what is attainableo. The

quantities which are frequently desired are:

(1). an estimate of the percentage explcdtrng at a fixed severity, and

(2). an estimate of the severity at which a fIxed percentage w-ill expkee.

The quantities which are usuauly obtainable are:

'i). an estimate cf t.he coantanzs w-Iclh c=pDete the :e lfication- •f rthe in-

crease, ass.uzinr a par- ... pa.. s fow fsr the...... c1 r

centage exp-O~dlnýg w~hSe-erl'-y,



(ii). an estimate of the severity at which a fixed percentage explode,

assuming a particular, simple form for the increase of zercentage ex-

ploding with severity, and

(iii). an estimate of the percentage exploding at a fixed severity, providei

this percentage is sufficiently different from 0 per cent or 100 per

cent.

When an estimate of the percentage exploding at a fixed severity is required,

and when this perco...tago. is neither very small nor very largy, the testin pro-

blem is very simple. It is merely necessary to make an adequate number of tests

at this fixed level.

When the percentage exploding at the fixed severity is very small or very

large, it is usually not feasible to make enough tests at this severity to obtain

a useful estimate of the percentage, and some other device must be used. All

known methods depend on the assumption of a specific functional relationship in-

volvinr several constants for the increase of percentage exploding with severity,

-- this dependence is important and there seems to be no way of avoiding it.

When an estimate of the severity at which a fixed percentage will explode is

desired, and when this percentage is neither very small nor very large, the testing

problem can be handled with relative ease. Various methods are available, and the

only complications arise from the need of balancing the number of tests for a

given accuracy against the extent of dependence of the estimate on the particular

form assumed for the increase of percentage exploding with severity.

When an estimate of the severity at which a very small or very large percentage

will explode is required, the problem is just as difficult, and the answer is just

S'•ýnsatisfactory; as i the case of estimating a very small or very large percent-

aze a: a f xed 2everity, aol for the same reason.

Ln sum1iry, therefore, there are three levels of dependence on assumptions:

A. 1No0 de.ende'r1 e on assumed form.

Estiatton of rrDderate percentage (i. e., neither very small nor very

zr~ezcaofIxed severity.
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B. sLilally unimportant dependence on assumed form.

Estimation of severity corresponding to moderate percentage.

C. Important dependence on assumed form.

Estimation of severity corresponding to extreme percentage.

Estimation of extreme percentage at fixed severity.

3. Scope of the Present Study.

The methods discussed in this report are intended to estimate the severity at

which a moderate percentage will explode ass g that severity can be measured on

a scale for which the percentage explodi-g varies with severity according to a cumu-

lative normal distribution (see Figure 1). We shall use the term levels to denote

equally spaced positions on this scale. This normal curve could be replaced by

some other curve, and may have to be as a result of future research, but there

seems to be no possibility of avoiding some choice of scale. As the general dis-

cussion above predicts, the dependence of the estimate on the assumption is only

moderate. However, some attention has been paid to the extent to which deviations

from normality affect the various methods.

The term staircase method is applied to any method where the severity of the

next trial or group of trials is directly determined by the results of the last

trial or group of trials. Four such staircase methods are described briefly below

as examples:

The NPF Inverted Design (Naval Powder Factory).

Starting at a level at which almost no explosions are expected, step up
one level after each non-explosion. When an explosion occurs, step down
one level and start to make a group of three trials. If all three fail
to explode the test is concluded. W1hen an explosion occurs, move down
one level and start a new group of three, proceeding according to the
same rules.

One Possible Cascade Degs4Eg.

Starting at a level at which almost no explosions are expected, step uo
one level after each non-explosion. When an explosion cccurc ; 2tep down
3 levels ano start again. Step up one level after each non-explosion annd
stop the test after the next explosion.

AMother Cascade Desi•.

StartLng at a level a t which almost no expI-'= are expected., mke
groups of two trials, 'eDpinx up one level ater each pair cf non-
explosions. Whe an exp .. is coirs, se2Wn one -evel ano start
again in pairs. Stop the test after the next ex-posion.



The Uo and Down Design.

StartlrF at a level where about 50 per cent explosions are expected,
move down one level after each expicsion and up one level after each
non-explosion. Stop the test after an assigned number of trials.

The present report makes a more or less complete study of a considerable

number of staircase methods and presents (in Section 5) a set of recommended

methods, with detailed directions and methods of analysis. The recommendations

are based on the extent to which the tests attain accuracy while minimizing

(a). the number of trials required, or

(b). the number of explosions required, or

(c). the sum of the number of explosions and one-tenth the number of trials.

Some attention has also been paid to simplicity of operation and analysis,

Criteria (b) and (c) above are pertinent in tests where the occurrence of an

explosion is more destructive or time-consuming than the occurrence of a non-

explosion. The factor 1/10 was chosen arbitrarily. Ln some analyses, it might be

desirable to choose a different value to achieve a proper balance between explosions

and non-explosions.

While this report is not an exhaustive study of staircase methods, it does

outline the possibilities of such methods (as explained in Section 6).

4. Discussion of Quantitative Criteria of Efficiencw.

A frequent situation in sensitivity testing is the following:

We are prepared to make N trials per test on the average. We desire as good
estimates as possible.

Since the number of trials per test varies from test to test in many of the stair-

case methods, the present analysis measures the labor involved by the average number

of trials. The number of trials usually depends very markedly or the interval size

used, and thus the same method, if used once will give different accuracies and

different average numbers of trials at different interval sizes. Because of the

relationship between number of trials, accuracy and interval size, the same high

accuracy can often be obtained with about the same number of trials by:

(I,;. using a very small interval size, or

ll f. usIng a larger interval size atd repeating the same method two or more

:Lies -n each sample-
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In (ii) the estimated percentage point is taken as the average of the separate

determinations.

If N trials per sample is a definite requirement for each sample (for

example, when the samples require careful advance preparation), and if N is small

(< 25), then the situation requires careful investigation beyond the scope of the

present report. In all other cases, however, and it seems likely that this in-

cludes most of the cases of practical importance, it will usually be enough to

charac-terize the efficiency of the test iun obtaini.n.g .accuracy from few trials by the

"Accuracy per trial" which is calculated as follows:

Accuracy per trial = mean squares (average numberj'(error of a J of trials J
(single testj \per test /

where the error is measured in units of the standard deviation of the (assumed)

normal distribution.

When the other criteria apply, there is rarely any fixed limitation on the

number of trials and the natural criteria are the

Accuracy per explosion = 1/ (mean square error of a single test)x

(average number of explosions per test)J

and the

Weighted Accuracy = 1/ [mean square error of a single test)x

(average number of explosions per test +

(1/10) average number of trials per test)]

To explain and partly justify these criteria, consider the case of an agency

which is willing to make 10o trials on a specific sample and which has to chose

between

ean square error 0 .
Method A.

•average nmber of trials ;



mean square error = 0.5,
Method B. taverage number of trials = 5.

If method A is used, 100 triels will allow about 10 repetitions, and the mean

square error of the result will be about

= 0.0 5.10

If method B is used, 100 trials will allow about 20 repetitions, and the mean

square error of the result will be about

0 = 0.025,20

The approximate mean square errors are each given by 1/[10o x (accuracy per trial)]

Clearly method B is to be preferred.

Suppose now that an agency is willing to spend a week testing a sample, and

finds that it can make 15 trials a day if none are explosions, and only 5 a day if

one is an explosion. Thus one explosion requires the same time as 11 non-explosions'.

Then if the agency is comparing

mean square error = 0.5

Method A. .average number of trials = 10

•average number of explosions = 2

with

mean square error = .0.5

Method B. average number of trials = 5

kaverage number of explosions = 1.5

it would be natural to calculate as follows. One test using method A would re-

quire (8 ý 2 x 11)/15 = 2 days on the average. In 6 days, there would be about

=-/0- ------. ti- .n... the - r error would- tho ohn.,t

0"-= 0.1.3

One test using method B would require (5,7 + !.5 x !1)/15 = 1.2 days or. the average.

Tin 6 days, there would be about 6/1 .2 = 5 repetitions, and the meant square error
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would be about

-'•= 0.1.

In this instance the two weighted accuracies are identical, both being equal to

1/.9. The agency can use either method.

Similar considerations would apply concerning accuracy per explosion if the

agency were only interested in the number of explosions.

5. Rcconmended M4ethods.

a. Suma . Seven methods of sensitivity testing and appropriate methods of

analysis are described here, and the conditions under which their use is desirable

are indicated. The methods presented have been selected on the basis of a number

of considerations, the most important of which are believed to be efficiency, sim-

plicity, and stability. A brief discussion of these is given.

The choice of a method for actual use will depend on the end point which is to

be used as a measure of sensitivity, as well as on other considerations. The

methods outlined here permit the use of the 10 per cent, 50 per cent, or 90 per

cei.t point as end points.

It should be understood that the methods presented are those which appear most

desirable in the present state of our knowledge. It is possible that further in-

vestigation may result in the development of new and better methods.

The recommended methods are as follows:

Method I : Naval Powder Factory (NPF).

Method 2 : NPF Inverted

Method 3 : Up and Down - Large Interval size.

Method 4 : Up and Down - Small Interval ,ize.

Method 5 : Single Explosion

Method 6 : SequentIal for 10 per cent Point.

?Method -: Sequential for 90 per cent Point.

The situations In which it seems best to use these various methods are sum-

marized in Table z. The numbers It. the table Ink.cate the n.mbers of the Methods.

Detailed descriptions of -he cethcds are Riven in the succeedirn pages.



TABLE 1.

Recommended Use of Method9 in terms of

Percentage Pontst(s) to be Estimated

Quantity to i0 per 50 per 90 Per 10 and go 10 and. 50 10, 50 andbe Minimized Vent point cent point cent point per cent per cent 90 per cent

only only only points points points

Number
of trials 2 4 1 3, or 3

1 and 2

Number of
explosions 5 - - -

Dependence
on normality 6 4 76 and 7 4 and 6 4, 6,

and 7

Number of
trials and
dependence
on normality 6 4 7 1 and 2 2 and 4 1, 2,

and 4

Method 1 : Naval Powder Factory (NPF)

Method 2 : NPF Inverted

Method 3 : Up and Do]w - Large Interval Size

Method 4 : Up and Down - Small Interval Size

Method 5 : Single Explosion

Method 6 : Sequential for 10 per cent Point

Method 7 : Sequential for 90 per cent Point

*Except for !wethod 3, interval sizes greater than o.50'are not advised. There

s.h..•uld be a: least 5 levels between the 10 per cent and 90 per cent points

except focr M14ethod 3).
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b. Efficiency. Most of the methods resemble the NPF method by involving a varying

number of trials' This analysis measures the labor involved by the average number

of trials. The number of trials usually depends very markedly on the interval size

used, and thus the same method, if used once, will give different accuracies and

different average numbers of trials at different interval sizes. The accuracy per

trial, most naturally measured by the reciprocal of the product of tne variance

and the average number of trials, is nearly constant over a range of interval size

for many methods. Thus the same high accuracy can- often be nbtaired with about the

same number of trials by:

(I). using a very small interval size, or

(ii). using a larger interval size and repeating the same method two or more

times on each sample.

In (ii) the estimated percentage point is taken as the average of the separate de-

terminations.

In some types of sensitivity testing, a trial resulting in an explosion is much

more costly than a trial resulting in a non-explosion. Here the ratural measure

of efficiency is the accuracy per explosion, which can be measured by the recipro-

cal of the product of variance and average number of explosions. Both accuracy

per trial and accuracy per explosion have been used in the selection of these seven

methods.

c. Simplicity. It is clearly desirable that a method should be simple to use and

easily taught to unskilled or semi-skilled operators. This aspect has been con-

sidered, but it is recognized that such judgments are Individual matters.

d. Stability. Sensitivity tests are often used to predict safety properties.

That is, tests under conditions of I per cent, 5 per cent, 10 per cent, 20 per cent,

or 50 per cent explosions are interpreted to apply to conditions of 0.; per cent,

0.01 per cent or 0.001 per cent explosions. Such Interpretations are always de_ -

cate arnd depend strong'l on the wiay 2 rwhich oer cent exo3csions is assumed to vary

w..t severity of test -r se';erlt- Cl hazndlnrg. Pres° -ethods of rinter:retatcon

are frecue.ntly based --n the asctin that, when sever-ty Is zeasrec o.- a sultable

scare, the per cent exc ls . .severfty c .. ce the '............-... . . .

laleno rmal c=- e. n th-e cases:1t alsnh;ec.t:c xml ,te
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assumpticn that comparisons at the ;o per cent point are similar to those at the

.01 per cent point Is equivalent to an assumption that the sensitivity curves are

similar.

The curve in Figure I represents the probability of explosion as a function

of height. The unit of measurement we shall use is the standard deviation (d).

The distance (in the properly chosen scale) from the 10 per cent *point to the 50

per cent point or from the 50 per cent point to the 90 per cent point is 1.280'

if the curve is the cumulative normal.

The choice of a scale on which the sensitivity curve is normal is frequently

a necessity for the interpretation of the sensitivity test. The normal curve could

be replaced by some other curve, and may have to be as a result of future research,

but there seems to be no possibility of avoiding some choice of scile. With this

in view, the fact that a method of assessing a 10 per cent point assumes a normal

sensitivity curve seems to be of minor importance. However, some attention has

been paid to the extent to which deviations from normality affect the various

methods.

In practice, it is always advisable to plan and analyze sensitivity tests on

a scale where the sensitivity curve is nearly normal. This is slightly less urgent

when small interval sizes are used. The methods described below all require such

a choice of scale. We shall use the term levels to denote equally spaced posi-

tions on this scale.

Since the interval size may affect the results of a sensitivity test, this

aspect of stability -has also been considered in selecting the recommended methods.
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Figure 1
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Method 1 : NPF

Recommended Use: Estimation of approximate 90 per cent point when the number

of trials is to be minimized.

Competing Method: For simultaneous estimation of the 10 per cent and 90 per cent

points the Up and Down Method requires about the same number

of trials (i. e., to obtain the same accuracy) as does the NPF

(90 per cent point) plus UPF Inverted (10 per cent point), but

is more dependent on assumptions.

Choice of Step and Number of Repetitions:

(1) For maximum accuracy per trial use a step of about 0.5e.

(2) To control average number of trials use Figure 2.

(3) Choose number of repetitions to obtain desired accuracy (Table

3) using average final levels.

Procedure: (1) Start at a level where almost all explosions are expected.

(2) If an explosion occurs in first trial, move down one step.

Repeat until a non-explosion occurs.

(3) After the first non-explosion start moving up one step at a

time as follows:

Make one trial, move up if it is a non-explosion;

If it is an explosion make a second trial, move up if this

is a non-explosion;

If this is an explosion make a third trial, move up if it is

a non-explosion;

If an explosion on the third trial at same level occurs, end

the test.

(4) Recr-• the .leve.l of tho last test --d the in-terflfl 917p.

Analysis A. (Rough - not recommended)

The final level estimates the 90 per cent point.
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Analysis B. (Rough - adequate for less than five tests.)

Case 1. If the step size is believed to be between ,.2dand 0.5od, the

average final level minus .2 steps estimates the 87 per cent

point.

Case 2. If the step size is believed to be between 0.5e'andd, the

average final level minus .5 steps estimates the 84 per cent

point.

Case 3. if the step size is believed to be between o.2dand d, the

average final level minus .4 steps estimates the 85 per cent

point. The use of this correction is less desirable than that of

Case I or 2.

Analysis C. (Only recommended for five or more tests on the same sample of ex-

plosive involving a total of at least 75 trials.)

(1) For a set of 5 tests add the difference between the largest and

and smallest level observed to the difference between the second

largest and second smallest. This sum is referred to as the

Total Deviation.

(2) Enter Table 2 with the Total Deviation expressed in interval

sizes and find the correction factor (in interval sizes) for

the 90 per cent point.

(3) Add this correction to the average final level of the 5 tests.

(4) If more than 5 tests are made (say N tests), compute the Total

Deviation in a manner similar to that described above.

(5) M'jultiply the Total Deviation in interval sizes by -- 9--

enter Table 2, and proceed as above.

Accuracy: The standard deviation of the estimate Is given in Table 5.
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TABLE 2.

Corrections for Various Values of Total De-iatton

Total Deviation in Steps Correction
for Sam-les of i in Stejps

3 -. 1

4

5
6 +.66 ..

7

8 +.6

9 +.6

10 +.6

12 +-5
14 +.3

16 -.1

18 -. 5

20 -I.0

TABLE 3.

Standard Deviation* of Estimates by NPF Method

Single Test 2 Tests 5 Tests N Tests

Interval Standard Standard Standard Standard
Size Deviation Deviation Deviation Deviation

.2d .50 .35 .22 -

.5 d .56 .40 .26 ýN

.6•4
1.0& .64 .46 .29

The standard deviations of estimates are given in terms of d (of the

ur-nderlying distribution). 66 per cent of the estimates will fall within

one standard deviation of the per cent point estimated.
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Figure 2

Average Number of Trials for the NPF Design

(under the assumption that the test is started where
almost no non-explosions occur)
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Method 2 NPF Inverted

Recommended Use: Estimation of approximate 10 per cent point when the number

of trials is to be minimized.

Competing Methods: For simultaneous estimation of the 1o per cent and 90 per cent

points the Up and Down Method requires about the same number

of trials (i. a., to obtain the same accuracy) as does the

NPF (90 per cent point) plus NPF Inverted (10 per cent

point), but is more dependent on assumptions. The Single

Explosion Method requires about the same number of trials,

but is more dependent on assumptions.

Choice of Step and Number of Repetitions:

(1) For maximum accuracy per trial use a step of about 0.5'1.

(2) For maximum accuracy per explosion use as small a step as

feasible.

(3) To contro] average number of trials per repetition use

Figure 2.

(4) Choose number of repetitions to obtain desired accuracy

(Table 3) using average of the final levels.

Procedure: (1) Start at a level where almost no explosions are expected.

(2) If a non-explosion occurs in the first trial, move up one

step. Repeat until an explosion occurs.

(3) After the first explosion start moving down one step at a time

as follows:

Make one trial, move down if an explosion occurs;

If no explosion occurs make'a second trial, move down if this

is an explosion;

if no explosion occurs on the third trial at the same level,

end the test.

(4) Record the level of the last test and the interval size.
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Analysis A. (Rough - not recommended)

The final level estimates the 10 per cent point.

Analysis B. (Rough - adequate for less than five tests.)

Case 1. If the step size is believed to be between 0.2dand 0.50, the

average final level plus .2 steps estimates the 13 per gent

point.

Case 2. If the step size is believed to be between 0.5dandd, the

average lin•al level plus .5 steps estimates the 16 per cent

point.

Case 3. If the step size is believed to be between c.2dandd, the

average final level plus .4 steps estimates the 15 per cent

point. The use of this correction is less desirable than

that of Case I or Case 2.

Analysis C. (Only recommended for five or more tests on the same sample of ex-

plosive involving a total of at least 75 trials).

(1) For a set of 5 tests add the difference between the largest

and smallest levels observed to the difference between the

second largest and second smallest. This sum is referred to

as the Total Deviation.

(2) Enter Table 2 with this number (Total Deviation) expressed in

interval sizes and find the correction factor (in interval

sizes) for the 10 per cent point.

(3) Subtract this correction from the average final level of the

5 tests.

(4) If more than 5 tests are made (say N tests) compute the Total

Deviation in a manner simliar to that described above.

(5) Multtply the Total Deviation in interval sizes by +w

enter Table 2, and proceed as above.

Accuracy: The standard deviation of the estimate is given in Table •.
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Method Up and Down - Large Interval Size

Recommended Use: To estimate simultaneously more than one of the 10 per cent,

50 per cent, and 90 per cent points when the number of trials

is to be minimized.

Competing Methods: The NPF and the inverted NPF methods, which together estimate

the 90 per cent and 10 per cent points with as small a number

of trials, depend less on the assumptions.

Choice of Step and Number of Trials:

(1) Use a step of about 1.5eand no larger.

(2) Choose the number of trials to obtain the desired accuracy by

consulting Figure 3.

Procedure: (i) Start at a level near the 50 per cent point.

(2) If the first trial results in an explosion move down one step

for the next trial; if the first trial results in a non-

explosion move up one step for the next trial.

(3) After each explosion move down a step; after each non-explosion

move up a step.

(4) Record the number of explosions and non-explosions at each

level.

Analysis: Use the method of AMP Report No. 101.1R to estimate the 50 per

cent point (m) and d. Then m + 1.28d estimates the 90 per cent

point and m - 1.280' estimates the 10 per cent point.

Accuracy: The standard deviation of the estimated per cent point is indicated in

Figure 3.
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Figure 3

Standard Deviation of Estimates by the

Up and Down Mathod with a Step Si7e

of Approximately 1.5ce
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estimated.
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Method 4 : Up and Down - Small Interval Size

Recommended Use: To estlirate the 50 per cent point.

Choice of Step and Nimber of trials:

(1) Use a step size of about .5e or smaller.

(2) Choose the number of trials to obtain the desired accuracy

by consulting Figure 4.

Procedure : (i) Start at a level near the 50 per cent point.

(2) If the first trial results in an explosion move down one step

for the next trial; if the first trial results in a non-

explosion move up one step for the next trial.

(3) After each explosion move down a step; after each non-explosion

move up a step.

(4) Record the number of explosions and non-explosions at each

level.

Analysis: Use the method of AMP Report No. 10i .iR to estimate the 50 per

cent point.

Accuracy: The standard deviation of the 50 per cent point is indicated in Figure 4.
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Method 5 : Single Explosion

Recommended Use: Estimation of low percentage point when number of explosions

is to be minimized.

Choice of Step and Number of Repetitions:

( ) For maximum accuracy per explosion use the smallest step that

is feasible.

(2) For maximum accuracy per trial use a step of about .50'.

(3) To control the average number of trials per repetition use

Figure 5.

(4) Choose the number of repetitions to obtain the desired accur-

acy (Table 5) using the average of the final levels.

Procedure: (1) Start at a level where almost no explosions are expected.

(2) If no explosion occurs on the first trial move up one step

and make another trial.

(3) Continue to move up after each non-explosion until an explosion

occurs.

(4) Record the level at which the explosion occurs and the interval

size.

Analysis A. (Rough)

Case i. If the step size is believed to be between .it and .20?, the

average final level minus 35 steps estimates the 7 per cent

point.

Case 2. If the step size is believed to be between .2d'and .5d, the

average final level minus 2 steps estimates the 10 per cent

pint.

Note: Tf the step size is believed to be between .nd and l.j0r,

these instructions still hold. However, this is now a rougher

approximation wihich should not be used unless abszlutey7 neces-
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Analysis B. (Only recc.-rcnded for five or more tests on the same sample

of explosive involving a total of at least 75 trials).

(1) For a set of 5 tests add the difference between the

largest and smallest level observed to the difference

between the second largest and second smallest. This

sum is referred to as the Total Deviation.

(2) Enter Table 4 with this Total Deviation expressed in

interval sizes and find the correction factor (in steps)

for the 10 per cent point.

(3) Subtract this correction from the average final level of

the 5 tests.

(4) If more than 5 tests are made (say N tests), compute the

Total Deviation In a manner similar to that described

above.

(.5) Multiply Total Deviation in interval sizes by 2  P-

enter Table 4, and proceed'as above.

Accuracy: The standard deviation of estimate is given approximately by Table 5.



2 .
Figure 5

Average Number of Trials for the Single Explosion Design

(under the assumption that the test is started
where almost no explosions occur)
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TABLE 4.

Corrections for Various Values of Total Deviation

Total Deviation in Steps Correction
12r 5amples ofi5 in Steps

3 +1.6

4 +1.8

5 +2.1

6 +2.2

7 +2.3

8 +2.4

9 +2.4

10 +2.5

12 +2.4

14 +2.1

16 +1.8

18 +1.4

20 +0.9
22 +.4

24 -. 4

26 -1 .3

28 -2.0

L30 -2.7

TABLE 5.

Standard Deviation of Estimates of Single Explosion Method

Single Test 2 Tests 5 Tests N Tests

Interval Standard Standard Standard Standard
Size Deviation Deviation Deviation Deviation

.622
.2 0 .62 .44 .56 T

- 5 O .75 .53 .43 .fT,

• . ". 8 9 . 6 3 . 5 1 -1

The standard devlation2 of estimates are given in terms of 0 (of the

underlyirn distribution). ii per cent of the estimates will fall within

one standard deviation of the per cent point estimated.
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Method 6 Sequential for 12 per cent Point
Method 7 : Sequential f or 88 per cent Point

Recommended Use: Estimation of approximate 12 per cent point when one desires

to make as few assumptions as possible concerning the under-

lying distribution. The recorded level estimates the '2 per

cent point regardless of step size. This method may also be

used to estimate the 88 per cent point if throughout the pro-

cedure non-explosion is substituted for explosion, li for down

and down for up.

Competing Method: The NPF Inverted requires a smaller number of trials for the

same accuracy but depends more upon the assumption concerning

the underlying distribution. The two methods require about the

same numnber of explosions.

Choice of Step:
(1) For maximum accuracy per trial use a step of about .50".

(2) To reduce the number of explosions use as small a step as

feasible.

(3) To control the average number of trials use Figure 6.

Procedure: (1) Start at a level where.almost no explosions are expected.

(2) If no explosion is obtained in two trials, move up one step.

Continue to move up after each pair of trials until the first

explosion occurs.

(3) After the first explosion, continue to test at this level using

the following procedure (disregarding the tests already made):

a. If two explosions are obtained out of 2, 3, 4, or 5 0

trials move down on? step as soon as the second explosion

is obtained.

b. If three explosions are obtalned out of 7, 8, 9, 10, !1,

12 or " trials move down one step as soon as the third

explosion occurs.
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c. If thirteen trials are made without obtaining an

explosion move up one step.

d. If no move (as indicated by a, b or c) has been made at

the end of thirteen trials, discontinue testing.

(4) As long as no decision of type 3(d) is obtained, continue to

move up or down as indicated by 3(a), 5(b) or 3(c). Dis-

continue testing when a decision of type M(c) follows a

decision of type 3(a) or 3(b), or when a decision of type

3(a) or 5(b) follows a decision of type 3(c).

(5) Record:

a. The level at which a decision of type 5(d) has been

obtained, or

b. The midpoint of the last two levels at which testing

occurred when testing has been discontinued as in (4).

Analysis: The recorded level estimates the 12 per cent point regardless

of step size.

Accuracy: The standard deviation of the estimate is approximately .4d for all

step sizes.
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Figure 
6

Average Number of Trials for the Sequential Design

(under the assumption that the test is started
where almost no explosions occur)
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6. Probable Scope of Staircase Methods.

Staircase methods are useful in testing under the conditions that

(i). trials are to be made one after another,

(ii). the outcome of each trial is available immediately, and

(iii). changes in severity are easy to make.

It seems reasonable to believe that the efficiencies of the methods recommended in

this report are nearly as great as those obtainable by any practical test. Curves

sketched on Figures 11 to 1 4 show an estimate of the true boundary in cowpai1son

with the attained results. Selected points are tabulated below. The usefulness

and e•tficiency of staircase methods in other types of sensitivity problems are

uncertain, but deserve careful study.

Estimated Optimum Performance of Staircase Methods

Point Accuracy . Accuracy

Estimated per trial Trials nerd per explosion

o.o0(5o per cent) .60

+I.0Od (16 and 84 .36 2 1.90
per cent)

±I.20 (12 and 88 .33 4 2.50
per cent)

±1.4d (8 and 92 .29 6 2.90
per cent)

j1.6d(5 and 95 .25 8 3.30
per cent)

* The density of testing seems to determine the accuracy per explosion.



32.

II. TECOI4ICPJJ

7. Introduction.

a. Some Mathematical Preliminaries. Expressed mathematically, the problem of

sensitivity testing, in somewhat more generality than actually used here, takes the

following form:

(i). The probability of an explosion at the level x is an unknown function, PrX

(ii). Tests may be made at the levels ho + kh, k = o, + 1, ± 2, ... where h0

and h have been chosen in advance on the basis of crude information or

guesses about px. The rules for selecting successive values of k may,

but need not, depend on the results of early trials.

(iii). It is assumed that the function Px is of the form

Px = q(•),

where q is a specified function and m and 6" are constants depending on

the explosive under test.

(iv). From the results of the test it is desired to estimate the level x

at which px = o4. This estimate can depend on the results of the various

trials in any way.

Expressed in these terms, the basic problem is to make a good estimate with as

little "trouble" as possible. Measures of goodness of estimate and amounts of

trouble are discussed briefly in Part I (Section 4), with the result that we shall

use the criteria given there, namely accuracy per trial, accuracy per explosion and

weighted accuracy.

Of the assumptions made above, (iii) is more restrictive than it should be

from the point of view of application, but, as discussed in Part I (Section 2),

there seems no way to avoid it.

In actual practice we shall assume that q(t) is the cumulative normal distribu-

tion with mean zero and unit variance

t 2

q(t) = 2 e z3,
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which is well tabled* in various forms. A graph of this function is given in

Figure I (page 1i).

We are concerned with a statistical situation and the result, for example, of

making ni trials at k = and n 2 trials at k = 5, is not certain -- it will vary

from repetition to repetition.

There will often be no loss of convenience in allowing the number of trials in

the resulting test to vary from repetition to repetition -- and this will often be

the case in staircase tests, where the level for the next trial depends on the re-

sults of earlier trials.

Since we have a statistical situation, it will be useful to recall some elem-

tary results. If the probability of an explosion on each of n independent trials

is p, then the probability of exactly k explosions in the n trials is

n ) nkoma cn-ko e

where (n) is the binomial coefficient k(n-k)! Similarly, the probability that

we obtain at least one explosion in n trials is

1 - (_-pAn

Another situation in which we shall be frequently interested is where we make

trials (the probability of an explosion in each trial being p) until we obtain either

one explosion or n non-explosions. The average number of explosions in repeated

Fisher and Yates, Statistical Tables, Tables I and IX.

Kelley, Truman L., The Kelley Statistical Tables, Table I.

Mathematical Tables from Handbook of Chemistry and Physics, pp 200-20t.

NAVORD Report No. 205-45, Tables to Facilitate the Analysis of Sensitivity Data.

Pearson, Karl, Tables for Statisticians and Biometricians, Tables I, II and III.

Work Projects Administration, Tables of Probability Functions, Vol. II.
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tests of this kind is

S- p)n

while the average number of trials is

1.p + 2-0p) p + 3(1-p) 2 p + ... + n( 1-p)n-f p + n(i-p)n - Pp

For those tests which end with an explosion, the average number of trials is

p + 2*(I-p) p + 5(1-p)2  p + ... + r( 1-p] Q( ] = --([+nv)C1=jn
,~PC1,-(, -p )n)

In many instances our test will provide two pieces of information, say x and

r jsee succeeding sections for the actual specification of x and r). Then the

probability that we obtain particular values of x and r will be denoted by P(x,r).

The probability that we obtain a specified value of one of these variables, re-

gardless of the value of the other, is given by P(x) and F(r) respectively, where

P(x) P(x,r), and

r

P(r) = 7 P(x,r)

X

If we desire the probability that x has a given value when r can assume only one

value, we write this as P(xlr) and immediately see that this is equal to

P ( x.r)F~r)

By the use of these probabilities we can define the expected (i. e., average) value

of x, E(x), the expected value of r, E(r), and the expected value of x, given that

r has a particular value, E(xlr), as
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E(x) = 2 x P(x),

x

E(r) = Ž_ r P(r), and

r

E(xIr) = x P(xlr)
x

Now if our final reported level, L, 3s a function of x and r, c have that

the expected value of L, E(L), is

E(L) = 2 21 L(x,r) P(x,r)
x r

- •i - L(x,r) P(xlr) P(r).
x r

Similary, the variance of L(x,r) is

oj 2= tZL - E(L) P(xlr) P(r).
z r

b. Outline of the Investigation. Various combinations of the above results by

means of elementary probability theory allow us, at least in theory, to write down

mathematical expressions for the criteria -- accuracy per trial, accuracy per

explosion, and weighted accuracy for the methods under consideration. However,

a little experience soon shows that it would be very difficult to compare the

staircase methods by means of these analytic expressions. For this reason we have

adopted a numerical approach to the problem. As expressed before, q(t) is taken

as the cumulative normal distribution for these computations with the understand-

ing that any other q(t), for which tabular values are available, could be used with

equal facility. Accordingly, we have proceeded in an exploratory way, computing

the three criteria for a wide variety of cases and then noting any trends which

show up in the data.

Since we have no explicit a priori distribution of a', one of the constants

appearing in the cumulative normal distribution, and no practical grounds for
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assuming one, each individual computation will be conducted at a constant step size,

i. e., h/a' . The usual procedure in studying a method or group of methods will be

to make a complete investigation for a step size of one half the standard deviation

(e') of the underlying distribution. Having done this, we pick out the best of these

methods with respect to one criterion, and then see what effect a change of step

size 1has on these selected methods.

It should be noted that accuracy per trial, accuracy per explosion, and

weighted accuracy, as defined in Section 4, are independent of the percentage point

estimated, i. e., x.,. As a consequence, the "best" tests will be picked out with-

out much attention being devoted to the average level which they estimate. After

determining the "best" tests in this manner, we shall specify this average esti-

mated level and attempt to devise adjustments which will minimize its dependence

upon the step size used in making the tests.

8. The Possible Adjustments.

In addition to ch-,sing procedures of testing, this study develops methods of

analysis of the results. When a particular test is made by a staircase design,

there is available at the end of the test

(i). the result of each group of trials, and

(ii). the results of the individual trials within the group.

Some investigation of special cases indicates that the information under (ii) is of

relatively little use in increasing the accuracy of the estimate. We give it no

further consideration in this report.

Let us now consider a special case of adjustnent. For many of the designs

considered, the information of type (i) consists of

(a). a preliminary critical level, x, and

(b). a final critical level, j.

Un•1e•s oth,., i3 a•.d Wi.. hx Q.nrnQgse as miqlripltn nf the qtnndard dev-

iation of the underlying norm.l distribution, the true 50 per cent point being taken

as 0.00. We can do this in a theoretical study of the teat, although we could not

do it in an actual application. Examples are the NPF Inverted Method (the level

of first explosion and the final level) and the Cascade Methods (the first and second
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levels of explosion). Now suppose that we wish to estimate a percentage point

from these two levels and that we are able to assume

(i). the sensitivity c'urve is a cumulative normal curve, and

(ii). some knowledge of its location and spread is at hand before the experi-

ment is made,

where the knowledge in (ii) has probably been gained from other tests on similar

samples, or from a preliminary test. It is clearly necessary to have some in-

formatIon with respect to (i a and to make certain adjustments in accord&ace with

it. Otherwise one would never know just what percentage point was being estimated.

To illustrate this, let us consider one of the simplest staircase methods, namely

the procedure which consists of making the first trial at a point which is, hope-

fully, far below the 50 per cent point and making each trial at successively higher

levels until an explosion occurs. If the interval size is large (and we must have

knowledge of the spread of the sensitivity curve in order to judge this), say 3

standard deviations, then the reported level will be at least the 50 per cent

point (neglecting the small probability of explosion at points more than 3 stand-

ard deviations below the 5o per cent point). On the other hand, if the interval

size is extremely small, say .1 standard deviation, the reported level will be much

smaller.

The adjustments to be applied should accomplish two things, namely,

(i). make the variance (for fixed S_, where S is the interval size expressed

as a multiple of the standard deviation) of the reported level a

minimum, and

(ii). make the average reported level (for fixed j) relatively constant as

S changes.

We can make separate adjustments for these two objectives since the addition of a

quantity depending only on _ will make an arbitrary adjustment to the average for

fixed _ without affecti-ng the variance for this fixed _. In other words, we will

have simply applied a translation. Let us start then by making an ajustment de-

signed to reduce the variance for fixed _.

For our discussion of the mi-z-um variance w.,e shall begin with tests which

end with tr.:; critIcal levels, x and y. We i=ediately see that these results carn

also be specified by x and r, r being defined as equal to y-x. r/S Is equal to the
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le•gth of the second run (i. e., the number of levels on which trials are made)

plus or minus a constant depending on the method. It is clear that the reported

level should be such a function of x and y that the reported level for x + a and

y + a is a more than the level for x and x. That is, the level is

L = x + f(y-x), or

L = x + g(r).

If we define P(xtr) as the probability of obtaining a particular value x, given

that y-x has a specified value r, and P(r) as the probability of obtaining this

specified value, then the average reported level, E(L), is equal to

E F7 [x +g(r) ] P(xlIr) P(r)
r x

Similarly, the variance of this reported level, L is

d r = x T ([L - E(L)] 2 P(xlr) P(r)L r x

= Z (- tx + g(r) - E(x) - E(g(r))] 2 P(xfr) P(r)
r x

= f P(r) 1 [x + g(r) - E(x) - E(g(r))]' P(xlr).
r x

In adjusting the x values, we are only permitted to add a constant amount,

this constant amount being possibly different for each value of r. Now in choosing

this constant, namely g(r), we are at present requiring that it should minimize d2
*L

It is well known that under such circumstances, we should choose

'.1,- - .. x r

- - x P(xlr),
x

*Differentiate d2 with respect to g(r), set this equal to zero, and solve for
gr
g(r).
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for with this choice of g(r), the means of all subsets of transformed x values are

equal, and consequently equal to the pooled mean. With this choice of g(r) we

have

2 [x -E(x~r)]2 P(xlr) P(r)
r x

since E[E(xlr)] = E(x).

In order to accomplish this adjustment for r we find that if we plot E(xlr)

against r in terms of the standard deviation of the underlying distribution we ob-

tain a graph that is nearly a straight line (see Figure 7). Hence we can approxi-

mate g(r) by a linear function. The addition to the variance caused by this ap-

proximation is negligible.

Thus for fixed interval size, S, we can find a constant, a, so that

x + ar

is well adjusted for the effects of r, though not at all adjusted for the effects

of possible changes in S. The dimensionless quantity a_ is a function of S, but

computation shows that it varies only slowly. We shall, therefore, select an

average value for each prejudged range of values of 8 which we wish to consider.

To illustrate this adjustment with a very simple example of a different sort,

consider the Single Explosion plus One Trial Design where one makes a single trial

on each level, moving up a level after each non-explosion. This procedure is

started at a level on which the probability of obtaining an explosion is almost

zero. As soon as an explosion is obtained, we record this level and make one final

trial on the next lower level, recording whether this trial results in an explosion

or non-explosion. x is the level at which the first explosion is obtained and r

is either 0 or I depending upon whether the final trial is a non-explosion or an

explosion. Given below for several interval sizes are the expected values for x

when the final trial is an explosion and when the final trial is a non-explosion.
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Figure 7

E(xlr) as a Function of r

for a Cascade Design

(k , m= 1, h 3)

E(xlr)
+1.000>

o 6= 1.0

-1.00

-2.00

-5.00
0 24
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Single Explosion plus One Trial Design

One trial on each level, final trial at one level
below the level of first explosion

Expected Level of Expected level of
Interval first explosion first explosion Variance of level

Size when final trial when final trial of first explosion
is an explosion is a non-explosion

.20C -. 36 -. 90 .39

.5• , +.29 -. 45 .56

1.00, +.95 -.01 .79

If the interval size is .2, then we take a as -. 54. This means that

E(x+arlr=o) = E(x+arfr=1 ) = -. 90. Similarly, for interval size .5, a is -. 74 and

then E(x+arlr=o) = E(x+arlr=1 ) = -. 45; for interval size 1.0, a is -. 96 and

E(x+arlr•0) = E(x+arlr=-1) = -. 01.

Notice that in this instance the definition of r was at our dis-
posal. If we had defined it to be 0 if the final trial'weie an ex-
plosion and I if the final trial were a non-explosion, then for interval
size .2, Awould be +.54 and E(x+arlr=o) = E(x+arlr=1) = -. 36; for
interval size .5, a would be +.74 and E(x+arlr=o) = E(x+arjr=2) = .29;
and for interval size 1.0, a would be +.96 and E(x+arlr=o) = E(x+arfr=1) =
.95.

We have thus replaced the situation tabled above by the following:

Single Explosion plus One Trial Design

One trial on each level, final trial at one level
below level of first explosion

Interval Expected value of Expected value of Variance
Size a x+ar when final x+ar when final trial of

trial is an explosion is a non-explosion x+ar

0.2a' -. 54 -. 9o -. 9o .34

•5ce -. 74 -. 45 -. 45 .46

Iod J -. 96 -. 0o -. 01 .60
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The addittonal adjustment necessary for making the average reported level

relatively free from choice of interval size will be based upon the fact that the

addition of a multiple of the interval size will make a larger adjustment the

larger the interval size. If the average reported level were a linear function of

interval size, then our adjustment would make the average final reported level

completely independent of interval size. Acutally, the average level is not a

linear function, and hence the adjustment will not be perfect.

This adjustment for changes in & must be applied in terms of interval size

and not of standard deviation since only the interval size is known accurately.

Let

i(S) = average partly corrected estimate at interval size

average value of (x + ar),

and let b be the number of intervals to be subtracted as a correction for interval

size effects. Then

x + ar -b&

is the final estimated level. The value of b will be chosen to make the average

estimated level at interval size 5,

i(S) - bS

nearly constant. The best correction very near & = 0 could be obtained from

0-00

-U 0

This correction can best be illustrated in a graphical fashion. Thus in Figure 8

we have first plotted the average value of x+ar (for interval sizes of .20', .50'

and 1.0d) for the Single Explosion Design which we have been considering in this

section, namely one trial on each level with the final trial one level below the

level of the first explosion.
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Figure 8

E(x+ar) for a Single Explosion plus One Trial Design
(one trial on each level, final trial one level

below level of first explosion)

E(x+ar)
+.20

0

-. 20

-. 40

6o'

.80

-1 .001

Straig t lines are tangent<
to the curve E x+ar).

-1 .20

-1.40 _ _ _ _ 1A _ _ _ _

0 .2 .4 ,6 .8 1.o

Interval Size t S )
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Between these computed points we have then drawn a smooth curve. The value

of b for a particulaiu c, bC obtained with ArnrhicrP accuracy by drawina the

0tangent to the curve at 8 = S and taking the slope of this tangent. Frti

example, the tangents have been drawn at S = .2e, 0 = .514 and 6 = 1.0oe, and the

corresponding values of b are 2.1, 1.15 and .7. The results obtained by the use of

these correction factors for interval size are surmmarized in the following table.

Application of Correction Factor for interval Size

to a Single Explosion plus One Trial Design

(one trial on each level, final trial one level

below level of first explosion)

Interval Size E(x+ar) E(x+ar) E(x+ar) E(x+ar)

W -2.10, S -1.1 * *45"7 *

.2 0 -. 9o -1.32 -1.13 -i.o4

.•3e -. 71 -1.314 -i.o6 -. 92

.14• -. 57 -1.41 -1.03 -. 78

.5d' -.45 -1.50 -1.02 -. 8o

.6e -. 34 -1.60 -1.03 -. 76

.7c' -. 25 -1.72 -1.06 -. 74

.8d -. 16 -1.84 -i.o8 -. 72

.9& -. 08 -1.97 -1.28 -. 71

1.0I ' -. 01 -2.11 -1.32 -. 71

1.1 " +..06 -2.25 -1.20 -. 71

1.2o' +.12 -2.4; -1.26 -. 72

* Slope of tangent dran -a .2e

• Slope of tangent drawn at .5d

•* Slope of tangent drawn at 1. od
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TABLE 6

Accuracy per Trial for

Si1igle Explosion pluzi i Tiairi MLvunuduj

(Interval Size of .5o)

kWmý J 'h 4-5- -2 -11 0 1 2 3 4 5 6

(.321)
1 .302 .531 ..347 .353 .348 .334 .332 .299 .286 .277
2 .327 .350 .355 .341 .312 .283 .250 .236
S,3354 .347 .559 .308 .269 .242 .213

2 0 (.262)1 .260 .272 .281 .3o6 .291 .280 .266 .253 .245 .24o .236
2.271 .291 .296 .291 .270 .246 .232 .221 .216

3 .259 .279 .303 .294 .272 .243 .220 .206 .199

3 0 (.228)
1 .245 .256 .258 .254 .248 .220 .216 .212 .210 .210

2 .259 .266 .253 .238 .217 .205 .196

3 .260 .268 .257 .236 .213 .198 .187

o 0 (.208)
1 .2162 

.226
3 .231
4 .230

0 (.193)
1 .201
2 .205"
3 .211
4 .215
5 .218

.215

For the estimated level in certain selected cases, see fables 12 and 19

(pages 5- and 72).

P) ,\CC r.a , per EZxpkcsiu , sE• Table 7 ýpag - 9).

For Xeffihted Accurac-, see Table S (page 51 ).

Thcze -- lues refer- tc the Sinrle Explosion Method.
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The maximum for t ixed k and h is at a value of m which is greater the greater k is.

In other words if a small number of trials is used at each level on the up seauencc,

a small number ox Lriais snoula De used at the final level.

For given k and m, the maximum is near h = 0. In some cases it pays to jump

up one or two levels' and make the final trials. However, since at k = 3 the

maxima for various m are only slightly different from values for h = 0, it was

thought that only the h = 0 cases need be studied for larger k. In these cases

there is a maxinum for m approximately equal to k.

The maximum accuracy per trial for all Single Explosion plus m Trials Methods

is given for k = 1, m = 2, h = 0, namely .355. In general, it takes an unneces-

sarily large number of trials if one takes more than one trial at a level cn the

up sequence.

In some sensitivity tests the expense of a trial resulting in a non-explosion

is negligible compared to that of one ending in an explosion. In such instances

one wishes to minimize the number of explosions in obtaining a given accuracy of

estimate. The criterion for this is the accuracy per explosion. This criterion

is tabulated in Table 7.

For the up sequence alone (i. e., Single Explosion Method) there can be only

one explosion and then the criterion is simply the reciprocal of the variance.

For these cases the variance decreL •es as the number of samples tested per level

increases. In fact, it is easy to see that by increasing the number of trials

indefinitely, one can be sure of ending on the same level that one starts on.

However, when another set of trials is made at a final level, the expected number

of explosions is greater than one. For a given pair, m and h, the accuracy per

explosion increases with increasing k.
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For a given value of k and h accuracy per explosion may go up or down with

increasing mn. For n = 0, the criterion decreases for k = I and k = 2, but it de-

creases with m, having a relative maximum near m = k. For h large, the criterion

decreaseu and for h small it increases.

For given values of k and m, the maximum of the criterion is at approximately

h = +2. In such cases the final trials are made at a very low level where the

probability of an explosion is small.

Of the schemes studied, the best from the point of view of number of explosions

is the up sequence alone for k = 5 with a variance of .317. Of course, for higher

k the variance would be less. On the other hand with a high value of k, one takes

a considerably greater number of trials.

A third criterion which takes account of both number of trials and number of

explosions is the weighted accuracy. This criterion assumes that the expense of a

trial resulting in an explosion is 11 times as great as one resulting in a non-

explosion. As pointed out in Section 4 it is a compromise between accuracy per

trial and accuracy per explosion. The values for this criterion are given in

Table 8.

In the case of the Single Explosion Method the maximum weighted accuracy is

given by k = 2, 3 or 4. For k = 1 the number of explosions is too large for the

variance; for kI 5 or greater the number of trials is too large.
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TABLE 8.

Weighted Accuracy for

Single Explosion plus m Trials Methods

(Interval Size of .5W)

Smh K5 -4 -5 -2 -1 0 1 2 3 4 5 6

0 (1.,14)
1 .75 .86 .95 1.03 1.09 1.13 1.19 1.13 1.10 1.09
2 .87 .98 1.08 1.1l4 1.14 1.11 1.06 1.01
3 .93 1.05 1.14 1.15 1.10 1.05 .97

2 0 (2.)
1 .87 .95 1.00 1.15 1.17 1.20 1.21 1.20 1.19 1.18 1.17
2 .93 1.05 1.14 1.21 1.22 1.19 1.17 1.13 1.10
3 .88 .99 1.15 1.21 1.23 i.19 1.14 1.10 1.07

3 0 (1.22)
1 1.00 1.15 1.16 1.22 1.26 1.20 1.19 1.18 1.17 1.17
2 1.11 1.21 1.23 1.25 1.20 1.16 1.13
3 1.09 1.19 1 .24 1.23 1.19 1.14 1I 10

4 0 (1.22)
1 1.21
2 1.23
3 1.24
4 1 .23

5 0 (1 .20)
1 1.20
2 1.20
3 1.22
4 1.23
5 1.24
6 1.22

For, Accuracy per Trial, see Table 6 (page 147).

For Accuracy per Rxplosion, see Table 7 (page 49).

These values refer to the Single Fxploslon Method.
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For the Single Explosion plus m Trials Method one has similar comparIsons for

fixed m and Ii. For example, for m i I and h = 1 the maximum is at k I 3. In fact,

the larger w is the greater is the k for which the welghted accuracy is a, maximum.

Varying m for h = 0 and k fixed yields a maximum for a value of w depending

on k. The correspondence (i. e., for h = 0) is k = 1, m - 0; k = 2, m = 0; k = 3,

m = 3; k = 4, mi 3; k = 5, m 5. The maximum weigited accuracy for any X, and m

(h = 0) is !.24.

it x and m are held fixed, the maximum weighted accuracy occurs near h = -2 for

k = 1, near h = I for other k_. For large k, however, the weighted accuracy for

h = 0 differs little from this maximum.

Uon tHbs bhaas of this investigation at interval size . 5 o', five Single

Explosion plus m Trials Methods were selected to be studied at different interval

sizes. The results of this investigation are stated in the next section. The

five methods chosen were:

1. k= 1, =, h =0

2. k 1 , m 1 I, h 1

3. k =, m 2, h= 0

4. k= 2, m 1, h= 0

5. k= 2, m- 2, h= 0.

c. Cascade Methods. A Cascade Method is a combination of two Single Explosion

Designs, the f trot one dtarting at -2.5 and the second starting at a given number

of intervals from the end level of the first run. The number of trials per level

for each run need not be the same. Each Cascade Scheme can be identified with a

triplet of numbers similar to those used for the Single Explosion plus m Trials

Method. Here k, m and h represent respectively the number of t±-als on each level

In the first up sequence, the number of trials on each level in the second up

sequence, and the number of intervals beLwee.n the end of the first sequence and the

start of the second one.

In all cases the level reported depends upon the end level of the first run,

x, and the end level of the second run, y. An adjustment to the level of the f1rst

explosion is made so that the expected value of the reported level is the same for
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all combinations of x and x for which y--x has the same value. This adjustment

minimnzes the variance of the reported level.

The same measures of efficiency are used to compare the various Cascade Schemes

as were used to compare the Single Explosion plus m Trials Schemes. Table 9 gives

the values for accuracy per trial.

TABLE 9

Accuracy per Trial for

Cascade Methods

(Intervals of .5d)

h 0 12 34

1 1 .38_ .384 .372 .354 .332
2 .365 .366 .353 .328 .2983 .331 .327 .300 .267

2 1 .297
2 .317 .313 .298 .276 .248
3 .303 .302 .283 .259
4 .285 .267 .252 .221

3 1 .264
2 .285 .279 .266 .248
3 .264 .252 .230

• For the estimated level in certain selected cases, see Table 15 (page 63).

For Accuracy per Explosion, see Table 10 (page 55).

For Weighted Accuracy, see Table 11 (page 56).

Given values for m and h, the fewer trials one makes on a level in the first

sequence, the greater will be the accuracy per trial. In every scheme tested the

maximum accuracy per trial was for Ic = 1 for a fixed m and h.
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Fixing k and h, one finds that changing the number of trIals on a level in the

second sequence does not cause as much variation as is obtained from changing k.

The maximum is at m = 1, even though is increases. From this one concludes that the

fewer trials one uses on a level in both sequences the greater is the efficiency.

For a given Ik and m, the maximum seems to be near h = 0. Actually it might

result in slightly greater accuracy to continue up one or two levels before start-

ing the second sequence. However, from the table it is evident that as the number

of levels backed down decreases, the accuracy per trial increases at a decreasing

rate. In the scheme k = 1, m = I or 2 the maximum is at h = 1, and the accuracy

decreases if one starts the second sequence at the same level as the first sequence

ends.

For all Cascade Schemes tested the maximum accuracy per trial results for

k 1, m 1 1, h = I. In general, the best results are for small k, mn and h.

Changing any two of these quantities, the greatest accuracy per trial is still ob-

tained for a small value of the third one.

Considering the accuracy per explosion, one finds it is merely a function of

the variance. Since both runs end as soon as one explosion results, the number of

explosions is always two, and the accuracy per explosion is the reciprocal of twice

the variance. Table 10 gives this measure for a number of Cascade Schemes.

For a given pair, m and h, the more trials on a level of the first run the

greater is the accuracy per explosion. Similarly for a given pair, k and h, the

more trials on a level of the second run the greater is the accuracy per explosion.

This is to be expected since the variance decreases (thus the reciprocal increases)

as the trials per level increases. Increasing the number of trials per level in

the second run has less influence than an increase in the number of trials per level

in the first run.

Holding k and m constant one notes that for increasing h the accuracy per ex-

plosion increases, but at a decreasing rate. It is quite obvious that it will level

off, since a jump that makes the second run start below -2.5 has approximately the

sf•.ne effect as a smaller jump that makes the second run start at --2.5. (The pro-

bability of an explosion below --2.5 is assuxmed to be zero.)
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TABLE 10

Accuracy per Explosion f or

Cascade Methods

(Intervals of .5W')

km01 23

V I 1.45 1.56 1.65 1.71 1.76
S1.447 1.64 1.80 1.92 2.00

3 1 .66 1.86 2.02 2.13

2 1 2.03
2 1.90 2.06 2.18 2.26 2,31
3 1.92 2.14 2.29 2.42
4 2.16 2.36 2.51 2.71

3 1 2.23
2 2.16 2.31 2.41 2.47
3 2.40 2.54 2.6?

* For Accuracy per Trial, see Table 9 (page 53).

For Weighted Accuracy, see Table 11 (page 56).

Of the schemes tested, the best from the point of view of accuracy per ex-

plosion is the one with k = 2, m = 4, h = 4. However, larger k, m and h, if

studied, would undoubtedly have given greater values for accuracy per explosion.

The values for the weighted accuracy are given in Table 11. Fixing Y! and h,

the weighted accuracy is greater at k = 3 for small values of h and greater at

k = 2 for larger values of h. For fixed k and h weighted accuracy varies little with

changes in m. The weighted accuracy is sli•tly larger at m = ? for k = !j at

m = 3 for k = 2 and at either = 2 or 3 for k = 3. Fixing k and in gives the

maximum weighted accuracy at h = 2 or 3, though a change in h has little effect.

The maximum weighted accuracy for all of the schemes tested was 1.27 for k = 2,

w = 3, h = 2. Judging from the quantities in Table 11, there is only a slight

advantage in any one method over any other since the values listed vary only from

1 .05 to 1.27.
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TABLE 11

Weighted Accuracy for

Cascade Methods

(Intervals of .-5d)

___ ___ ft 0 *12 3 4

S1.0 1.11 1.14 1.15 1.15
2 1.05 1,13 1.19 1.21 1.20
3 1 .11 1.19 1.21 1.18

2 1 1.21
2 1.20 1.24 1.26 1.2a 1.18
3 1.17 1.25 1.27 1.25
4 1.23 1.25 1.23 1.22

3 1 1.21
2 1.23 1.26 1.26 1.24
3 jj1.26 1.26 1.23

* For Accuracy per Trial, see Table 9 (page 53).

For Accuracy per Explosion, see Table 10 (page 55).

Upon the basis of our investigation at interval size .5 W, vie have selected

five Cascade M'ethods foor closer study in the noxt section. In particular, vwe shall

be concerned with their behavior when the interval size is changed. The methods

chosen are as follows:

2. k= 1, Di= 1, h= 3

4. k =2, M =1, h=3

5. k = 2, m = 2, h = .
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10. Staircase Methods at Differont Step Sizeso

a. General. For most staircase methods the size of the step has an effect on the

outcome of the test. However, for some methods such as the Up and DownL (for step

sizes less than 1.5 ') the step size affects mainly the accuracy of the final esti-

mate, but not its average value. On the other hand the average outcome of a method

like the Single Explosion Method depends to a considerable extent on the size of

the step. In this case, if the step size is extremely small the percent point esti-

mated is relatively small because when many trials are made where the pr-obability

of an explosion is smali eventually an explosion occurs (I. e., one moves up very

slowly). If the step size is large, the test quickly arrives at a higher per cent

point. Figure 9 indicates the average level at which the explosion occurs for dif-

ferent step sizes. A table of the expected levels is given below.

TABUE 12

Average Level Estimated by Single Explosion Design

(one trial on a level)

Step Size Average Level

.025 -1.711
.05 -1.444
.1 -1.140
.2 -.790
.5 -. 241
.7 -. 005

1.0 +.274

b. Correction for step size. It would be desirable to use a design for which the

average estimated point does not depend on the step size. Unfortunately, most of

the efficient designs have this step size effect and it is therefore necessary to

include in the analysis accompanying a design a compensating correction. One can-

not completely elimnMate the effect but If the approximate step size is known, it

can be reduced to an alnost nogl-gA.,_ ... nt. The general approach to be used in

this problem has been outLined In Secticn 8.
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Figure 9
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An example will show the kind of correction that is feasible. The Single

Explosion Method estimated .7900W for a step size of .20' and -.2½1d for a step

size of .50• . We desire an adjustment, which is independent of the step size, such

that the adjusted average level will be the same for the two step sizes. In other

words, we wish to determine a constant, c, such that

-. 7900•' - (.2r') c be', and

From these equations c is in-ediately found to be equal to

-.2 ÷ .5

This procedure can be summarized as follows:

Step Size Average first Average level of first
explosion at explosion mhius 1.85 step sizes

.2 0'-.790 e

.50, -. o1 -I2.1560

In Figure 9 this correction can be illustrated by draving a straight I The through

the points on the curve at .2 and .5, The y-intercept of the line is approximately

-1 .156 and the slope is approximately 1 .83.

To correct for any other two step sizes we draw the corresponding line. If

the curve were a straight line then the same line would correct for- all points; that

is, a constant times step size subtracted from the estimate would give the stme

average irrespective of step size. Small curvature is one of the desirable features

of a good test.

For each pair of step sizes, one can make an exact correction in this manner.

If this difference between the two step sizes is small, the correction will hold

good approxJimatoly for the region between. In Section 5 some rough correctGions are

suggested. For example, between .5 and 1.0 step sizes it is suggested that one
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subtract I step. This correction gives

Interval Size Average Level

.5 -. 741

.7 -. 705
1.0 -. 726

All of these values are rem' -. 67 which is the 25 per cent point.

c. The NPF and NPFI Methods. The NPFI method (i. e., NPF Inverted) is simply the

reverse of the NPF Method. In the former case we estimate the 10 per cent point

(approximately) and in the latter, the 90 per cent point. For the sake of con-

venience, we shall write in detail only of the NPFI design. It is understood that

analogous statements hold true for the NPF Method.

Below is given a table which indicates the expected level and the variance of

the reported level for various step sizes.

TABLE 15

Characteristics of the NPFI Method

Step Expected Average No. Accuracy Average No. Accuracy
Size Level Variance of Trials per Trial of explosions per explosion

.1 -1.300 .2250 19.7 .226 1.65 2.69

.2 -1.153 .2497 15.0 .267 1.87 2.14
• 5 I-1 .219 .3180 1012 .308 .1 .96 i1.6o

1.0 -1.494 .4152 8.1 .297 1.77 1.36

For this method the level estimated depends on the step size in such a .-ay that

for either very small or very large 3tep sizes the per cent point is very small

while for Intermediate step sizes, the per cent point may be as large as 15 per cent.

In Section 5 instructlions are given tor correction factors for vaprious pairs of

step s'Zes. For a step size of abo-t n ro crrrect I dn=n eeded. The average

number of trials Increases as the sten s2.ze decreases. Oan the other bend the

%:ar-a.-cecreases. To: ..s, Y 026 .te- . --ze is1e few trials bu'Ut uc-.,es
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very rapidly. Thus there is considerable variability0  The accuracy per trial ha'

a broad maximum near a step size of .6.

For a particular interval size one reduces the variance by using the informa-

tion given by knowledge of where the first explosion occurs. This adjustment is

made as suggested in Section 8. This means that for each value of the difference

between final level and first explosion level one calculates the expected level and

adjusts for the differences of these levels. However, the reduction in variance in

this instance is fairly small, less then 10 per cenL. The expected levels given

in Table 13 are uncorrected, while the variance is with the correction applied.

The average number of explosions also depends on the interval size. The

maximum is at about an interval size of .5. Since the variance is smallest at the

smallest interval size, the accuracy per explosion is largest at small interval

sizes. Hence, if one wishes to keep the number of explosions down, one uses the

smallest step size feasible. This will also maximi2e the weighted acccuracy.

d. Cascade Methods. As indicated in Section 9 five Cascade Methods were selected

for a study of the effect of step size on expected level and efficiency. The

characteristics of each method were computed for step sizes of .2, .5, and 1 .0. To

make certain that at step size 1.0 (where the effect of the relation of intervals

to the origin is greatest) testing on the levels -2.5, -1.5, -. 5, etc. instead of

-3.0, -2.0, -1.0, etc. made no difference, starting at -3.0 was compared with start-

ing at -2.5 for each method. Essontially the only difference wan- that starting

ac -3.0 added one half the number of trials per level to the average number of

trials.

In a test with a given Cascade Method two numbers result, namely, the levels

of the first and second explosion. Another way of recording this information is to

take the level of the first explosion, and the level of the second explosion minus

the level of the first explosion. This difference has been designated as r. In

Figure 10 we have graphed, for a particular method and step size, the expected level

of the first explosion for each value of r. This information is for the k = 1,

m 1, h = I scherin (step size of .2&o). If, in making a test, one were certain that

the step size were .2, then the most efficient estibmate would be to add to the level

of the first explosion en amount dependling on r so that whatever the value of r one
ct'
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Figure 10
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obtains the same level on the average. This correction minimizes the variance.

The effect of r is nearly linear. Hence, we can simply add to the level of

the first explosion an amoLut which is the product of r and a certain number, a.

In the case of .2 step size the proper number a is .74. Then one estimates -. 50

(i. e., the 31 per cent point). The variance is increased negligibly (by .00011) by

usiing a linear correction instead of the exact correction. In Table 14 are given

the values of the correction factor a for four step sizes, and also the average

reported level.

TABLE 14

Correction Factors for a Cascade Design

(k= 1, m= 1, h= 1)

Step Size Correction Corrected
Factor a Average Level

.1 .78 -. 83

.2 .74 -. 50

.5 .66 -. 03

1 .0 .58 +.38

If the correction factor w'ere the same for all step sizes, one could set up a

single adjustment for use at any step size. Then one would merely need to correct

for variations in the average level as in the NPFI scheme. Since the correction

factors do vary, wie must use some compromise. For example, suppose wve believe that

the ktep size is between .2 and .5. If vwe add 2/3 of (y-x) to the first end point

wve would get almost the same effect as if we used .74 ( for .2) or .66 (for .5).

This is, of course, the same as averaging the twio end points and weighting the

second twice as heavily as the first. Then to correct for the average level w'.e

shall subtract 1.7 interval sizes (see discussion of Single Explosion Design in (b)

of this section). Such a procedure estimates the 12 per cent point. At .2 there is

a bias of .010 and a contribution to the variande of .0016; at .5 there is neither

bias nor contribution to the variance.
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Table 15 gives the correction factors for (y-x) and the average levels for

other Cascade Schemes. Adjustments similar to the one considered above can be

made for each procedure.

TABLE 15

Values of the Correction Factor and the Average

Reported Level for Various Cascade e.signqs

k=1, m7=l, h=3 k=1, M-=2, h=3 k=2, re=i, 1=r. k=2, M=2, h=i

Interval Average Average Average Average
Size Reported Reported Reported Reported

a Level a Level a Level a Level

.2 .65 -. 64 .81 -. 81 .51 -.90 .73 -. 90

.5 ._54 -.20 -. 64 -. 44 .45 -. 46 .64 -. 50
1.0 .50 +.28 .57 +.01 .44 +.01 .57 -. 13

In general, for increasing step size we have increasing variance but decreasing

average number of trials. The net result is that the accuracy per trial increases

to a point and then levels off or decreases. In several cases the maximum accuracy

per trial occurs near a step size of .5.

It is characteristic of all of these methods that the smaller the step size the

lower the per cent point estimated. Suppose that we plot the estimated point against

step size and draw the tangents to the curve at the Imown points. Call the inter-

cepts on the vertical axis MN . These represent the average levels when the cor-

rection is ideal for step sizes near 5 . M& also increases with 6 .

Figure 11 is the plot of Mg against accuracy per trial for different interval

sizes and different Cascade Methods. Up to interval sizes of about .5 the points

lie quite well on one curve, wihich means that accuracy per trial increases as M

increases, regardless of the test. This implies that it is more expensive by any

test to estimate extreme per cent po'nts than (relatively) moderate ones. Further-

msre, It does not make too much difference w-hich of these tests one uses. The

-alues of Mi and accuracy per tria& 1t-r the Cescade M'ethods are Igiven In Table '6.
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TABLE 16

Values of M6 and Accuracy per Trial

for Cascade Methods

k=1, in=1, h=1 k=1, me=1, h=3 Ik=1, M-=2, h=3 k=2, mr=1, h=3 k=2, m=2, h=1

Interval M Ace./ MI Acc./ M@ Ace./ M8  Ace./ MN Acc./
Size Trial Trial Trial Trial Trial

.1 -1.28 .269

.2 -1.00 .318 -1.01 .310 -1.07 .294 -1.29 .251 -1.28 .269

.5 -. 61 .384 -. 80 .354 -I.0o .328 -1.07 .297 -1.03 .313
•7 -. 91 .303

1.0 -. 17 .387 -. 51 .327 -. 77 .284 -. 72 .280 -. 67 .316

The number of trials on each level in the successive runs of a Cascade Method

should clearly affect the accuracy per explosion. Empirically the product of (i)

the average over the runs of these numbers, and (ii) the number of levels perue

is the important quantity. We denote this product as trials per a. For oxample,

the scheme involving one trial per level moving up twice provides 1 trial periv

when the step size is 1, 2 trials per o when the step size is .5, etc. The scheme

which proceeds up by one trial to an explosion and then by two trials per level to

the second explosion provides 1.5 trials per a' when the step size is 1.0.

Figure 12 indicates this relationship for the 5 Cascade Methods. It is clear

that the points are nearly on a single curve. To raise the accuracy per explosion

one must increase, in any way, the number of trials per & . This can be done by

decreasing the interval size or'by increasing the number of tests per level, both

of which increase the average number of tials, oil by chagi•ng to a method With

fewer runs and more trials per level. This latter need not increase the average

number of trials. Apparently the practical maximum accuracy per explosion is be-

tween 4 and 6. The values for trials per c/ and accuracy per explosion for the

Cascade Methods are given in Table 17.
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TABLE . 7

Values of Trials per 6" and Accuracy per Explosion

for the Cascade Methods

k=I, m71I, h='1 k=1, m=1, h=3 k=1, m=2, h=3 k=2, m=1, h=3 k=2, m=2, hr1

Interval Trials Acc./ Trials Ace./ Trials Acc./ Trials Acc./ Trials Ace./
SiZe perc ID per e E•p. er Exp pera Exp. per d Exp.

.1 10 2.89

.5 2 1.56 2 1.71 3 1.92 3 2.05 4 2.06

-7 2.14 1 .658

1.0 i1 1 15 1 1.27 1.5 i1.44 -1.5 1.4+6 2 1.52

e. Si le Exalosion Dlus m Trials Methods. These methods can be treated in a

fashion similar to that of the Cascade Methods. On a test with a given method two

pieces of data result, namely, the level of the first explosion and whether an ex-

plosion occurs in the subsequent trial or set of trials. The reported level is the

level of the first explosion modified suitably according to the result of the next

trial (or trials). Table 18 gives the expected level of the first explosion for

an explosion or for a non-explosion at different interval sizes for one design.

TABLE 18

Sin•le Explosion plus m Trials

(k -- i, m = 1, h 0)

iSter Expected Level Expected Level Difference in Variance
Slie for Explosion for Non-Explosion Exrected Levels

-- 2.72
= --. 55 .72 •.

.. 7 -,_ - .29,d. •
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The type of adjustment possible for minimizing the variance of the reported

level with the Single Explosion plus m Trials Designs has been discussed in Section

8. Following this example, we see that at step size .2 one should subtract 2.6

(= .53/.2) step sizes when an explosion occurs on the last trial to match the -. 92

average for a non-explosion on the last trial with the minimum variance (.333). At

step size .5, however, the match-Ing adjustment is 1..4 - .72/.5 step Sizes to u

mate -. 55. Suppose we use the correction of 1.4 when the step size is .2. The

expected level is now -. 85 (instead of -. 92) and the variance is .345 (instead of

.335). Then we should subtract one step size (see Section 10(b)) to compensate for

effect of step size on average level. This adjustment gives an estimated level of

-1.05 (= -. 89 -. 2 = .55 -. 5). It is clear that similar adjustments can be made for

any Single Explosion plus m Trials Design and any pair of step sizes. Of course,

sometimes the resulting variance is far from the minimum for a given step size.

Similar characteristics, i. e., expected level for explosion, expected level

for non-explosion(s) and variance, for the other Single Explosion plus m Trials

Designs are given in Table 19.

Let us now see how efficient these tests are in terms of accuracy per trial.

In Figure 13 are plotted the accuracies per trial against the levels estimated by

ideal correction (for interval size). The curve that these points approximate is

roughly the same as the corresponding one for the Cascade Methods. In other words,

the accuracy per trial depends mainly on the level estimated, not on the particular

test. Values for MS and accuracy per trial are given in Table 20.

The analysis of accuracy per explosion reveals that the Single Explosion plus

m Trials Designs are in this respect, too, similar to the Cascade Methods. Figure

14 shows the relationship between accuracy per explosion and "trials peroW " (see

preceding discussion of Cascade Methods). In this instance we neglect the additional

m trials in determining "trials per W ". The points lie approximately on the same

curve a2 we. obtained for the Casad Method * h mlt-u-: 15 Li U ±1oe n

creases the number of trials per level and decreases the step size he will increase

re nff4ic4nr in terms of ex s to achieve the . .es.'redcl acc...rac. Valas of

trIals Peru' and accuracy per expicsiLn are given in Table 2'.
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TABLE 19

Characteristics of the Single Explosion

plus m Trials Methods

S---, b = 1, h - k= 1, m 2, h = 0

Step Expected Expected Level Expected Expected Level
Size Level for for Non-Explosion Variance Level for for Non-Explosion Variance

S[p o n EXT p o !i nni

.2 -.36 -.9o .34+00 -.44+ -1.03 .2980

.5 +.29 -. 45 .4580 +.08 -. 76 .3970
1.0 +.95 -. 01 .6033 +.56 -. 61 .5441

k =2, m = 1, h = o k = 2, rn = 2, h = o

Step Expected Expected Level
Size Level for for Non-Explosion Variance Expected Expected Level

Explosion Level for for Non-Explosion Variance
Explosion

.21 -. 76 -I .21 .2726 -. 79 -1 .27 .2532

S51 -24 -. 83 .3650 -. 31 -. 96 .328o

1. +.23 -. 5$ •4709 +.13 -. 77 .427.6

TABLE 20

Values of M-S and Accuracy per Trial for Single
Explosion plus m Trials Methods

k=, ne=, h= c k=, m7=1, h= 1 k=, I m=-2 , h;=o k=2, =,h-_0 k=2, 13=2, h=0

S... . -",c ; Acc.! M, A ec ./ .1, Aec.
*rrt t -a "IS A4, " ' Ia "S",ra.±±• _a _ _Tri_ _Tr.a_ _ Trial Tria!

.-. - .3 5 -". 0 . I *•- .4

I-.-'~.2 .25 260 .. 2. ... .® . 35, -: .272 0 -", 1 . "

"-. -.o-2 . 3r L .3 "7'_j -. •" = .. ...- u -. 90 .> -

ItJ -- =------ _ - _ __ _ - - - _ t
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TABJY, 21

Values of Trials per ®r and Accuracy
per Explosion for SIngle Explosion

plus m Trials Methods

k=1, r=i, h=O k=1, m-1, h=1 k=1, n-2, h=O kI2, m=1, h=O k=2, M-2, h=G

Interval Trials Ace./ Trials Ace.! Trials Ace./ Trials Ace./ Trials Ace./
Size per W Exp. per &r Exp. per' Exp./ per Exp. per _ Exp.

.2 5 2.40 5 2.45 5 2.37 10 3.1" 10 3.09

.5 2 1.59 i.(] 2 i.56 4 2.47 4 L_.o8
1.,0 1 1.11 1 1.,28 1 1,05 2 1.47 2 1.,44

f. Estimating the step size. Since the level estimated depends on the step size

it is desirable to have some practical way of estimating the step size when it is

unknown. This can be done when several tests are made on the same sample of ex-

plosive under the same conditions. The general idea is that we use the set of

trials to estimate the variation of the reported level in terms of step sizes and

thereby estimate the step size.

Suppose we have a set of 5 tests. Let us use the sum of deviations about the

median as our measure of variation. This quantity, which we term the Total Devia-

tion is simply the largest level less the smallest added to the difference of the

next largest and next smallest. For the Single Explosion Scheme Figure 15 gives

the expected value of the total deviation (expressed in step sizes) for different

step sizes. If we measure the total deviation in terms of steps, it will always

be an integer because each explosion occurs on one of the given levels. Using the

graph in reverse we can estimate the step size from the observed total deviation.

If more than 5 tests are made (say N tests), compute the total deviation by taking

* thulLI Uw of ± dfeiri:UeU of larget~ L CAIU smaIllest ousre lcJUOCL etc 1.4,11+4 Ad1 L UI

total deviation, expressed in step sizes, by -- 9-- to obtain a quantity whose ex-2N-1

pected :alue is approximately the same as the total deviation (in step sizes) in a

set of tes-t.

"Whcn,: th- _deriwng distr'bLut•on is near'y nora., the totalde'ion (..r a

set of 5 c"ses) averages 5.5 tlmes the standard de.ato.
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On the basis of our estimate of the step size we can then correct the average

level of the 5 tests so as to estimate the 10 per cent point (or any other point).

Figure 16 shows what the correction to be subtracted should be, both in terms of crl

and in terms of step sizes, for the Single Explosion Design.

11. The Sequential Method.

a. General discussion. In Section 3 of this report a "staircase" method has been

defined as a method where the severity of the next trial or group of trials is

directly determhind by the last trial or group of trials. For each method which

has been discussed up to this point a rule of procedure has been given which, when

carried through to the completion of the test, determined the characteristics of

the estimated percentage point. These rules of procedure have been chosen because

they furnish an estimated percentage point in an efficient manner, efficiency re-

ferring to the criteria of accuracy per trial, accuracy per explosion, or weighted

accuracy. No particular attention has been paid to what the method accomplishes

at a fixed level.

A systematic, rather than empirical, approach to the problem can be obtained by

focusing attention primarily upon the relation between the results of testing at a

given level and the percentage potnt which is to be estimated. Clearly the level

corresponding to the desired percentage point must either (1) be above the level at

which the testing is taking place, (2) lie on the test level, or (3) lie below the

test level. Now if a reasonable criterion can be obtained which will distinguish

between these three possibilities upon the basis of trials made at the level, then

testing at successive levels will give directly usable evidence concerning the de-

sired percentage point. For suppose that at level x, the criterion indicates that

the desired level is above level x. Then if testing is done at level x + S and

the criterion indicates that the desired level is below this level, there is evidence

that the desired level is between levels x and x + &

There are certain rather obvious ways in which such a criterion can be arrived

at. For example, one might simply carry out ten (or any other fixed number of)

trials on a level and calculate the per cent explosions. If this experimental per-

centage were lower than the desired percentage, the next ten trials would be con-

ducted on the next higher level. If it were lower, the next •en trials would be
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conducted on the next lower level. This procudure would then be continued until the

first time that the results on one level indicated that the desired percentage point

was above this level, and the results on the next higher level indicated that the

desired percentage point was below this level. For the moment the actual level

assigned to the desired percentage wil.l be neglected, although it would necessarily

be taken between the two final levels. It should be noticed that this procedure is

related to the standardized Picatinny Method.

Once the number of trials to be used on a level has been determined, the pro-

bability can be calculated that any particular decision will be obtained on a speci-

fied level. Thus, if the number of trials made on a level is ten, the probability

of an explosion on a level is px and the 15 per cent point is to-be estimated, then

the probability is (1-p + 10(1-px)gpx that the criterion tells us to go up a

level after 10 trials on level x. Similarly, the probability that the criterion

tells us to go down one level is 1 - (1-p x) 10 - 10(1-Px) 9 px. In this example there

is no provision made for saying that the level tested corresponds to the 15 per cent

point, and so the probability of this decision is zero. The probability that the

decision will be to move up one level is graphed as a function of Px in Figure 17.

This curve is ordinarily called the Operating Characteristic Curve or the Operating

Characteristic (abbreviated 00 Curve or OC). Once the CC for a criterion requiring

a fixed number of trials at a level has been determined it is possible to compute

the average number of trials required to complete one determination of a desired

per•entage point, and also the variance of this estimate.

It is apparent from the OC given in Figure 17 that at a single level one may

commit one of two errors. First, if the testing is being done at a level where PX

Is less than .15, there is a probability of moving down one level when one should

be moving up a level, and second, if testing is being done at a level where px is

greater than .15, there is a probability of moving up one level vjhen one should be

mnvinay (-lntin n 1 avnl - Th-q ternror woulda hnth he vprn If.th 00 hor- theilncr

for all values of PX less than .15 and zero for all values of px greater than .15.

Hcw-.,ever, such a curve could only be produced by settingr up a plan with an irfinite

number of trials. AccorJn.gly it Is customary to describe such a plan as this by

choosing a value p,. less than .19 and a value p. greater than .15, and specifyJA-

the probabilIty that the first typo of error w-.-ill be meP. If -pm. end the pro-

batility tbat the second rtype of error bll he .ade if px = 2.
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Figure 17

Probability of Moving to Level x+JS After Ma.king
Ten Trials on Level x

(see text for description of test procedure)
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Thus, if testing is being done at a level where px = P1 , the probability of

an error is designated by -4, and if testing is being done at a level where Px = P2'

the probability of an error is designated by!9 . For Px < P1 the probability of an

error is less than at, and for Px > P 2 the probability of an error is less thanfi .

It should be noted that in this particular, simple example (for given p1 and p2) the

choice of n (the number of trials made on a level) determines both of and f , or the

choice of one ofet and9 , determines the other end also n.

The discussion of this method ha. illmstrated the considerations which must

enter into the choice of a final method. However, this particular one is very in-

efficient for the task at hand because it requires a large number of trials to com-

plete one determination of the desired percentage point. Now it is a well known

empirical result in sampling theory that if one specifies an OC by fixing values of

P1 1 P 2, G( and 1C , then there are many criteria which approximately meet this speci-

fication. All criteria which have the same p', p2 .6t and 1G will, in a sense, esti-

mate a fixed percentage point with the same accuracy, but the average number of

trials required will be different for the different criteria. In the present situa-

tion, it would be desirable to use the criterion which uses the smallest average

number of trials.

b. SequetialProbabilitRatioPlan. There is one sampling plan available for

use in developin$ a method which approaches this property of minimum average number

of trials. This is the Sequential Probability Ratio Sampling Plan as described by

Wald in the Journal of the American Statistical Association, Vol. 4o, No. 231, pp.

277-306. The statement is made that this plan has the property that the average

number of trials required to reach a decision concerning the location of the desired

percentage point is minimized simultaneously at the two levels for which px = p,

and p2. In general, it will not be possible to obtain a criterion which requires

the smallest number of trials for all values of px"

The distinguishing characteristic of the Sequential Probability Ratio Sampling

Plan is that it does not require a fixed number of trials to reach a decision. In-

stead it gives a decision on a two way alternative as soon as enough evidence has

been accumulated to make the probabilities associated with the two types of error

less than or equal to oa and Of . The application here may be described as follovws.
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it is desired to estimate the level at which the probability of an explosion is p.

On the basis of certain considerations with respect to accuracy and number of trials,

values for p,, p2, o and g9 will be chosen. p, is less than p, and p 2 is greater

than p. Once these constants have been chosen, reference to Wald's paper enables

one to compute two sequences of integers uo, u2 , u3, ... and di, d2, d3. . . . . (The

subscripts refer to the accumulated number of trials on a particular level.)

Now suppose testing is being done on level x and that it is necessary to de-

cide on the basis of trials whether the level corrPesponding to p is above x, bolow

x, or is nearly identical with x. As the testing is carried out on this level, a

record is made of the trial number (n) and the total number of explosions which have

been obtained in these n trials. After each trial the number of explosions is com-

pared with the two sequences above. If, at any point in the testing, the number of

explosions in n trials becomes equal- to Un, testing is discontinued and the state-

ment is made that the level corresponding to p is above x. On the other hand, if

the number of explosions in n trials becomes equal to dn, testing is discontinued

and the statement is made that the level corresponding to p is below x. As long as

neither of these decisions is obtained, testing is continued.

This entire procedure may be stated more precisely as follows:

For each value of n (trial number) we determine

un = A + B'n and

dn = C + B-n where

A=

log, -l -

-o log
B P2=P and

C -- f
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If un is not an integer, we replace it by the largest integer less than un.

Similarly, if dn is not an integer, we replace it by the smallest integer

which is greater than dn. Now if we are testing on level x, we continue

making an additional trial as long as en. the number of explosions in n

trials, satisfies u1 < en . dn" If for some value n we have en un., then

we discontinue testing on level x and move to level x + 8 . If for some

value n we have en > dn, then we discontinue testing on level x and move to

level x-& . When the per cent point has been bracketed we stop.

If this procedure is applied to a level x as described above, a decision one

way or the other will eventually be reached. The number of trials required to

reach this decision will vary from test to test, and may, at times, become quite

large. For this reason it has been desirable in the present application to decide

upon a maximum number of trials which are to be taken at any one level. If this

number of trials is performed on a level with no decision being reached, the state-

ment will be made that the desired percentage point lies on this level. This pro-

cess of truncation means that the nominal values of o( and 14 are not, in. fact, the

exact risks. However, for the sake of convenience o( and 1 will be used as re-

ferring to the truncated procedure as well as the untruncated procedure in deter-

mining the un and dn sequences.

As far as procedure is concerned, there is only one additional step to be

considered. If one should start testing on a level quite far removed from the

level corresponding to the desired percentage, the Sequential procedure would prove

quite costly with respect to total number of trials. For this reason, some one of

"the simple "staircase" methods should be used to locate a level at which to begin

the detailed sequential procedure. Empirical experience with the type of sequential

procedure described below suggests that the accuracy of the final level is nearly

independent of whber the detailed seouential procedure is started.

In order to illustrate the type of design which is obtained from these general

considerations, let us suppose that we desire to estimate the !2 per cent point.

p, will be taken as .08, P2 as .16, u( as .25 and 1 as .25. Furthermore, no more

than thirteen trials will ever be made on a single level. This is the Sequential

Plan which 1.s recommended in the gencral part of this report for the estimation 0L

the 12 per cent point. Then the operator's instructions will read as follows:
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(1). Start at a level where almost no explosions are expected.

(2). If no explosion is obtained in two trials, move up one step. Continue

to move up after each pair of trials until the first explosion occurs.

(5). After the first explosion, continue to test at this level using the fol-

lowing procedure (disregarding the tests already made):

a. If two explosions are obtained out of 2, 3, 4, or 5 trials move

down one step as soon as the second explosion is obtained.

b. If three explosions are obtained out of 7, 8, 9, 10, 11, 12 or 13

trials move down one step as soon as the third explosion occurs.

c. If thirteen trials are made without obtaining an explosion move up

one step.

d. If no move (as indicated by a, b, or c) has been made at the end

of thirteen trials, discontinue testing.

(4). As long as no decision of type 3(d) is obtained, continue to move up or

down as indicated by 3(a), 3(b), or 3(c). Discontinue testing when a

decision of type 3(c) follows a decision of type 3(a) or 3(b), or when

a decision of type 3(a) or 5(b) follows a decision of type 3(c).

(5). Record:

a. The level at which a decision of type 3(d) has been obtained, or

b. The midpoint of the last two levels at which testing occurred when

Letls6Li has been discontinucd as in (h).

The recorded level estimates the approximate 12 per cent point.

It will be noted that this procedure starts with a Single Explosion (two trials on

a level) Design.

Investigations have been conducted to see whether certain other interpolation

schemes could not be substituted for (5) above which would reduce the variance of

estimated percentage point. No scheme was discovered which would make any signiii-

cant reduction in this variance.

The design pattern for a Sequential Test such as outlined above is determined

by fixing values of pl.', pý c , 1 , and the maximumm nu-ber of trials to be used or,

any one level. yn oroer tc obtain scme indication of the way in which values should

be assicmed to these varlables, certain computations have been carried out cn the
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assumption that a cumulative normal distribution represents the probability of ex-

plosion as a function of height of test. As in the previous sections, the location

of the levels at which tests are to be made will be measured in terms of </ , the

standard deviation of the assum-ed normal d.Istribution. The point at wh,1ch 5 per

cent explosions are expected will be taken as the origin of this scale of measure-

ment.

In all the computations which follow, p1 is always taken as .08 and p 2 as .16.

In general, increasing p1 and decreasing P2 (for fixedo( and )9 ) will have the same

effect as decreasing a( and p9

c. Effect of changes in c4 and /9 . The fundamental investigation concerning the

choice of oa, 9 , and the point at which truncation occurs will be conducted for an

interval size of .5 r . Consequently the levels at which testing occurs are -2.50',

-2.0e, -1.50', -1.0e, -. 5d, 0, +.5(/, etc. In what follows thed will be under-

stood even though it is not explicitly written down. There is no a priori reason

for supposing that e4 should be taken equal toft , but in order to simplify the

computations this assumption is made, except for two cases contained in Table 22.

Furthermore, each Sequential Scheme will be preceded by a Single Explosion (two

trials on a level) Design as given in our illustrative example for 04 = 1t = .25,

P1 = .08, P2 = .16, and truncation at 13 trials. For the computations, it was

assumed that testing started at -2.5'.

The first sct of co~uain worc mad for 14 =.5, .20-

o0 = j = .25 and o( = = .30. In each instance truncation was made at approxi-

mately the same number of trials although some variation was allowed because of the

particular characteristics of each plan. In computing the expected value and the

variance of the estimated percentage point, the estimate of the percentage point for

each repetition of the test was taken as in (5) of the representative plan given in

this section. The pertinent data obtained from this investigation are given in

Table 22.
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TABLE 22

Summary of Results for Sequential Methods

at Interval Size of .5o'

(n 0o8. o_ = .16)

(1) (2) () (1) (5) (6) (7) (8)

'g =3 = :15 53 trials -1.18 .0738 60.5 9.2 .224 1.47 .889
9= 4i ý .20 55 trialu -1.16 .- 732 56.9 8.4 .24o 1.63 .971

S= = .25 52 trials -1.17 .0885 49.7 7.1 .227 1.59 .938

o= --- .30 34 trials -1.14 .1134 42.3 6.1 .208 1.45 .854

S= .20 30 trials -1.11 .0907 47,7 7.2 .232 1.53 .921S=.30

.30 33 trials '-1.21 .0884 51.2 7.0 .222 1.61 .935

.20

(1) Process Truncated at

(2) Expected Value of Estimated Point

(3) Variance of Estimated Point

(4) Average Number of Trials

(5) Average Number of Explosions

(6) Accuracy per trial

(7) Accuracy per Explosion

(8) Weigbted Accuracy

An examination of this table shows that the accuracy per trial, the accuracy

per explosion and the weighted accuracy assume maximum values for (4(=19) between

.15 and .30. The variation in these criteria for A (=/5) between these limits is

not very large, and we have chosen to take c((=4) = .25 for the remainder of the

investigation. It is to be noted that aso((=/9) increases from .15 to .30, the

average number of trials and explosions decrease while the variance of the estimated

percentage point increases. The expected value of the estimated percentage point

varies only fromf -= 1 (correeponding to 1i .9 per cert) to -1.54 (corresponding to

Per cen' If the difference in point of +mnfcation is taker. IIlo account,

it io geer -hat the resuitq for q- .20, / C 0 and c( = .50, t = O gv
Iq =.1 .; 9 =- 2 give ap-

.ircxzimte h same remit• as o( (=/)3 . c5 except that the expected values for

7 . . . . "t'.. --
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d. Effect of point of truncation. Let us now examine the effect of truncation on

the Sequential Method for ot (= ) .25. A summary of the results obtained is

given in Table 23.

TABLE 23

Effect of Truncation on Sequential Method

at Interval Size of .5cu

(a / = .25, P1 = .08, P2 = .16)

Expected Variance
Process Value of of Average Average Accuracy Accuracy Weighted
TrncatedEstmated Ed No. of No. of per perTruncated Estimated Estimated Trials Explosions Trial Explosion Accuracyat Point Point

32 trials -1.17 .0883 49.7 7.1 .227 1.59 .938

23 trials -1.16 .0952 435. 6.4 .240 1.64 .978

13 trials -1.11 .1249 32.0 5.-0 .250 1.60 .976

This table indicates that the accuracy per explosion and the weighted accuracy

assume maximum values for truncation between 13 and 32 trials. However, the actual

advantage of any one part of this range over any other appears to be very slight.

The accuracy per trial is Increasing over this range. As one truncates at a smaller

number of trials, the average number of trials required for a determination of the

percentage point decreases while the variance of the estimate increases. Within

this range of truncation the expected value of the estimated percentage point varies

from -1.17 (corresponding to 12.1 per cent) to -1.11 (corresponding to 15.4 per cent).

Upon the basis of the data presented in Tables 22 and 23, the general part of

this report recommended the use of the Sequential Method with ((=H/) = .25, p1 ý .08,

P 2 = .16 and truncation at 13 trials for the estimation of the 12 per cent point.

It is true that truncation at 23 trials would give slightly larger values for the

efficiency criteria, but the greater simplicity achieved by truncation at 13 trials

outweig'eghs this gain. Operator instructions fo;r this method are given in the general

part and are repeated in this section as an illustration.
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e. Effect of change in interval size. As a final step we have investigated the

stability of this method with respect to changes in interval size. The results

obtained are given in Table 24.

TABLE 24

Effect of Interval Size on Sequential Method
(oZ= /9 .= p, = .08, p 2 = .16)

Truncation at 13 Trials

Expected Variance
Interval Value of of Average Average Accuracy Accuracy

Size Estimated Estimated No. of No. of per per Weighted
Point Point Trials Explosions Trial Explosion Accuracy

.2 -1.19 .1292 40.8 4.1 .190 1.89 .946
.5 -1.11 .1249 32.8 5.0 .250 1.60 .976

1.0 -1.21 .1823 25.6 4.8 .214 1.14 .745

From this table the following observations can be made:

(1). For interval sizes ranging between .2ct and 1.0c , the expected value

of the estimated percentage point varies only from -1.11 (corresponding

to 13.4 per cent) to -1.21 (corresponding to 11.3 per cent).

(2). For maximum accuracy per trial an interval size of about .5e should be

used.

(3). The average number of explosions tends to increase as the step size

increases.

(4). The average number of trials decreases as the step size increases.

For this particular method, it makes very little diffeit ence where the testing levels

are located with respect to the underlying distribution. Thus for an interval size

of 1 .00 , the expected value of the estimated percentage point is -i .21 If testing

starts at -2.5& (test levels being -2.50' , -1.5e , -. 5." , ÷ .so, etc.) and
-1.19 if testing starts at -.. 0oe (test levels now being -3.0d , -2.00 , -aoa'

+. +.3,' , etc.).

In this section we hav-e not shown how; to compnte the results of the use of a

Secuential Plan. These details .'.l to discussed in the section on Sequential Methocs

-- e hefcc-uta-iumal r ~rtion ci this re'ort.



87.

12. The Pursuit Method.

The Pursuit Method was devised to reduce the effect of the assumption of normal-

ity. This method can be illustrated by considering its application to the estimate

of the 10 per cent point. Its distinguishing characteristics are that

(i). it requires a predetermined number of trials, and

(ii). it attempts to concentrate the trials on the two levels between which the

10 per cent point lies.

We proceed as follows:

After a trial has been performed on a level, compute the per cent ex-

plosions on this level, taking into account all trials which have been made on

this level.

If this percentage is less than 10 per cent, make the next trial on the

next higher. level.

If this percentage is greater than 10 per cent, make the next trial on the

next lower level.

If this percentage is equal to 10 per cent, make the next trial on the

same level.

Continue in thi9 fashion until the fixed number of trials have been made.

Estimate the 10 per cent point by using linear interpolation on the two

levels which bracket the 10 per cent point.

This method has been investigated by experimental procedures, as explained in

Section 24, and the results are summarized in Table 25. Similar experimental pro-

ced...es can be applied to investigate any proposed method.
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TABIL 25

Results* Obtained by Using the Pursuit Method
to Estimate the 10 per cent Point

(Interval size .56; First trial at -3.0)

Number Average Accuracy Accuracy
of No. of Average per per Weighted

Trials Explosions Levol Variance Trial Explosion Accuracy

25 4.5 -1.14 .1849 .216 1.2_0 .773

50 7.6 -1.30 .0961 .208 1.37 .826

100 13.6 -1.39 .0576 .174 1.28 .736

* Each value in this table is based upon a set of 40 experimental tests.

For details, see Section 24.

A comparison of the values given in this table for accuracy per trial, accuracy

per explosion and weighted accuracy, with those obtained from the other methods under

similar conditions, seems to indicate that the Pursuit Method is not as efficient as

the others. For example, at interval size .5e the NPFI Method (Table 13) gives

.308 for accuracy per trial, 1.60 for accuracy per explosion and 1 .06 for weighted

accuracy. The Sequential Method (Table 24) gives .250 for accuraby per trial, 1.60

for accuracy per explosion and .976 for weighted accuracy.

13. The Picatinny Method.

The method used at the Picatinny Arsenal differs from the others in one im-

portant respect in that the operator is given a large degree of choice in the exact

procedure followed. As in all other procedures a set of levels (equally spaced in

some scale) is taken. Ten trials are made on each level which is chosen for use in

a specific test. The aim of the procedure is to obtain results on two consecutive

levels such that there is no explosion on the lower of these two levels and there

is at least one on the upper. The upper of these two lvels is reported.
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An example will illustrate the method. Suppose that the set of levels taken

is -3.0, -2.5, -2.0, ... , 1.0. The first ten trials are made at -3.0 and no ex-

plosions result. The operator then decides he is below the "10 per cent point" and

begins to make ten trials at +.5. When an explosion occurs on the fifth trial, he

decides he is above the 10 per cent point. The third set of 10 trials is made at

-2.0 and no explosions occur. The operator decides to move up and make ten trials

at -1 .5. When an explosion occurs on the eighth trial the test is finished and

-1 .5 is reported.

It is clear that the number of trials for the test depends on the operator.

If he is not skillful in successively braketing his end point, a very large number

of trials will be required. Not only the number of trials, but also the accuracy

and the per cent point estimated depend on the exact sequence of operations.

To obtain any numerical results concerning the Picatinny Method it has been

necessary to standardize the procedure. It has been assumed that if there is no

explosion on the first level at which trials are made then the operator tests on

each successive higher level until an explosion occurs. If there is an explosion on

the first test level he tests successively on lower levels until he obtains ten non-

explosions on a level.

If the test starts at -4.0 and proceeds upward by steps of .5, the 7 per cent

point is estimated with a variance of .290. Since the number of explosions is one,

the accuracy per explosion is 3.45. This value compares favorably with other tests

such as NPF (1.61) and the Single Explosion (1.77 at step size 0.5 and 3.40 at 10

trials per c ). The average number of trials is 55.4, hence, the accuracy per

trial is extremely small, namely .062. If the test were started at -2.5 about 29.9

trials would be saved, but the variance would change only slightly. Then the ac-

curacy per trial would be .135.

An alternative standardization of the procedure is to start where there is a

negligible possibility of 10 successive non-explosions and then proceed downmwiards.

Starting at +.5 and using steps of .5 one estimates the 13 per cent point, and the

variance is .471. The number of trials required on the average is 22.1. The accur-

acy per trial is .096. This figure is lower than when one starts at -2.5. The

average number of explosions is 4.26 and the accuracy per explosion is .499.
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It should be observed that the Picatinny Method, when standardized to start

where there are practically no explosions, is simply a Single Explosion Design with

10 trials per level. As pointed out in Section 9 the accuracy per explosion in-

creases as the number of trials per level increases, while the accuracy per trial

decreases.

14. The Up and Down Method.

a. Introduction. The Up and Down Design and statistical analysis were devised for

the purpose of estimating the 5o per cent point and the standard deviation (a') of

the assumed underlying normal distribution. Since the normal distribution is com-

pletely specified by the 50 per cent point (or mean) and standard deviation, it is

obvious that one can estimate any percentage point on the basis of the estimates of

the 50 per cent point and the standard deviation. In the present section we shall

study the accuracy of this natural method of estimation.

b. The method of estimation. In assuming a normal curve, we assumed

so that knowledge ofc and W would allow the calculation of the x corresponding to

given p from

x + kc,

where

p q(k).

The Up and Down Method0 produces an estimate m ofk/c and an estimate of s of ov , so

the natural estimate of x is

m + ks.

Values of k + 5.000 are given in Fisher and Yates, Statistical Tables, under the

nome of "Probits".

W ANv Report No. 101.IR indicates how to obtain these estimates.
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c. Accuracy, Sampling error in our estimate of the p per cent point arises be-

cause of the sampling error in m and s. Since the sampling errors of m and s de-

pend on the step size as well as on the number of trials, our estimate of the p

per cent point does too. Figure 18 indicates the standard deviation of m (6') for

a sample of 50; Figure 19 gives the standard deviation of s (6') for a sample of 50.

For example, if the step size is 1.5 (in W) then d is .215 and O is .256.

Since the estimates of•_ and q' are nearly statistically independent the stand-

ard deviation of m + k-s is approximately

ao2 k2.4Y2S

where t/ and e- are the standard deviations of m and s, respectively. From this

in s

expression it is clear that the standard deviation of m + k-s increases with k; that

is, the farther from the 50 per cent point the p per cent point is, the greater is

the sampling error. For a sample size of 50 and interval size of 1.5 the standard

deviation is

.0462 + k 2 (.o655)

For any sample size (and interval size of 1 .5) the accuracy per trial is

1/(2.312 + k 2 -3.276). This expression is graphed against k in Figure 20. The

accuracy per trial for the estimation of the 25 per cent point is .26; the accuracy

per trial for the estimation of the 10 per cent point is .15. The latter figure is

somewhat lower than the accuracy per trial for some other methods. For per cent

points smaller than 10 per cent, this estimate becomes much more inaccurate.
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Figure 18
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Figure 19

Standard Deviation of the Estimate of the

Population • by the Up and Down Method
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Also included on Figure 20 is a curve which represents our estimate of the

accuracy per trial for any sample size and for interval size of 1.5, when one con-

siders that m + k-s are estimated simultaneously. The equation of this curve is

given by

2 2

2.312 + k2.3.276

where r is the correlation between m + k's and m - k's. r is given by the ex-

pression

P
1 - ki2 s

m2

1 + k2 
ý2

2dm

On the average one half of the trials will be explosions. Hence, the accuracy

per explosion will be twice the accuracy per trial, namely, 1/( 1.156 + k.1.6 3 8).

This method is peculiar in that the maximum accuracy per explosion is at the

50 per cent point, where it is .865. However, at the 25 per cent point (accuracy

per explosion .519) it is more economical in explosions to use some other method.

Since the weighting of dmand a depends on the value of k the best step

size for estimating m + k-s varies with k. One of these standard deviations (ain)

increases with increasing step size, while the other (as) decreases. Therefore,

the accuracy per trial is increased for small k_ if the interval size is decreased.

Table 26 gives the accuracy per trial for four different step sizes and 4 values

of k.
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TABLE 26

Accuracy per Trial for Up and Down Method

k Step Size .2 .5 1.0 1.5

0.0 .608 .566 .455 .433

.5 .199 .305 .336 .319

.7 .121 .211 .257 .255

1'0 .066 .128 .172 .179

No larger step size than 1.5 is taken because beyond that point a' and a'
m s

depend on the relation between,^ and the levels at which the testing is carried

out. If the true mean falls midway between two testing levels, cr' increases as

increases, while <' decreases slightly. However, if the true mean falls on a

level both standard deviations increase. Since one would seldom be certain of the

relationship between,/c and the testing level, it is better to use a step size no

greater than 1 .5.

Table 26 shows that beyond a k of about .75 it is more efficient to use a step

size of 1.5 than any smaller although the difference between the accuracy per trial

for 1.5 and 1.0 is very slight over the range k = .5 to k = 1.0. In general, for

small values of x accuracy per trial is quite insensitive to charges in step size.

Roughly speaking, the step si2e indicated is as follows:

(1). To estimate per cent points from 44 per cent to 56 per cent use a step

of about .2.

(2). To estimate per cent points from 37 per cent to 44 per cent and 56 per

cent to 63 per cent use a step of about .5.

(3). To estimate per cent points from 24 per cent to 37 per cent and 63 per

cent to 76 per cent use a step of about 1.0.

4. To estimate per cent points less than 24 per cent and greater than 76

per cent use a step size of about 1.5 and no larger.

For per cent points near 50 per cent one can obtain greater efficiency than indicated

by Figure 20. Table 26 shows the improvement in efficiency in terms of accuracy per

tr~al by choosing smaller step sizes when per cent points near 50 per cent are to be
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estimated. The maximum increase in accuracy per trial over the values given in

Figure 20 is 27 per cent (at the 50 per cent point).

d. Confidence intervals. From Figures 18 and 19 one can compute dm and C/ for
in S

a sample of 50 and hence the standard deviation of m + k-s (=y, say) which is

/-m2 + 2 2
"<s

If the sample is of size N instead of 50 multiply the standard deviation for 50 by

50/N to obtain the corresponding standard deviation for a sample of size N. For

reasondbly large samples we may regard y as normally distributed with mean of the

per cent point estimated and standard deviation as computed (say cey). For smaller
y

samples, however, we can make a. correction for lack of normality (see AMP Report

No. IOI .iR, pp. 20, 21). The statement about confidence intervals can be made as

follows: The true value of the number estimated by y will, on the average, lie

between the two numbers

y - 1.96 N+2.4 dy

and

y + 1.96 N+2t4
N y

95 times out of 100. •The 99 per cent confidence interval is (y - 2.58 X+5.2

Y + 2.58 N++.y2N y'

e. Com-parison with other methods. This method of estimation depends strongly on the

assumption of normality. The farther from 50 per cent is the per cent point esti-

mated, the greater is the dependence on this assumption.

The Up and Down Method can as easily be used to estimate both a high and low

per cent point as to estimate merely one. Hence, it may be more efficient to use

this than one of the other methods when one wishes to estimate two or more points.

The efficiency for one point is rather low. For example, the accuracy per

trial for an estimate of -. 7 (in terms of cl ) is about .26. On the other hand the
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Single Explosion Method with step size .7 estimates approximately the same point

(when properly corrected for interval size) with an accuracy per trial of slightly

less than .33.

Suppose that one estimates -1.0 and 1.0 by these two methods (using the Single

Explosion Method inverted for i.0). The accuracy per trial for the Up and Down

method 4a .35 and for the Single Explosion Method (interval size .5) is .16. If the

points are farther away from 0, and only one point is desired, then methods other

than the Up and Down are better. For example, for the 10 per cent point the accur-

acy per trial for the Up and Down is about .13 but for the NPF is about .16.

1 5. Future Research in Methods.

Since it is not possible to foresee all the useful developments of the future,

the purpose of this section can only be to outline some apparently promising direc-

tions of study. In some cases it is easy to point out exactly what computations

need to be done, while in others we can only indicate a goal. The following para-

graphs indicate as far as possible goals, methods and motivations.

a. Number of trials. Any staircase method is well adapted to sensitivity testing

where (i) preparation of the sample is easy and (ii) the time to conduct (and ob-

serve) one trial is short. However, such methods as the Up and Down are equally

well applicable to situations where preparation is lengthy and where, for effictency,

a chosen number of samples should be prepared at once. This convenience can be

associated either with an advance knowledge of the number of trials which a test

will require or with an efficient analysis of tests which have been terminated at a

fixed number of trials. Clearly the development of highly efficient tests for the

10 per cent and 90 per cent points where the number of trials, at least within very

narrow limits, can be predicted in advance, or where the tests can be efficiently

analyzed when terminated at an arbitrary point, would be desirable. Work under f,

g, h and i below will be relevant.

b. Corrections for curvature. The methods recommended in this report suffer most

from curvature of the per cent point estimated as a function of interval size. The

present types of adjustment deal with curvature only at the end of the test, and

rather crudely. The following questions require attention:
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(i). Can better procedures to correct for curvature be devised?

(ii). Can simple methods be found which are affected less by curvature than the

methods of this report .

c. Confidence intervals. When the recommended methods are applied to a case where

the assumption of normality holds, it is possible to compute confidence intervals.

These are only known for the Up and Down Method. More study here would be useful.

d. Wys of testing normalit-. How can the assumption of normality be efficiently

tested? Comparison of results of the 1•FF Inverted and thc Up and Down Method for

the 10 per cent point has been suggested. How good is such a test? How should its

results be interpreted? Are there better ways ?

e. Non-normal operation. How do the means and variabilities of the recommended

methods change when the sensitivity curve is not normal? Some information exists,

but not nearly enough.

f. Block Up and Down Methods. Various Up and Down Methods utilizing blocks of

trials and not single trials can be easily devised. For example,

(i). make 5 trials at a level, go up if 0 or I explosions, go down if 2 or 3

explosions,

(ii). make trials at a level, going up at the first non-explosion, going down

at the third explosion (proposed by NPF).

We need to know the means and accuracies per trial associated with several such

methods, and also the best methods of analysis.

g. Variable Interval Methods. The possibility of using smaller and smaller inter-

vals as the trials proceed clearly saves a few trials which would otherwise be lost

in finding the approximate level desired. This is particularly clear for Cascade

Methods. Are there other gains? How much do they amount to?

h. Multiple Cascade Methods. In this report, most Cascade Methods are applied for

one or two up sequences. The prominent exception is the Up and Down Method which

can be regarded as a Cascade Method with a large (20 or more) variable number of up

and down sequences. Intermediate cases need to be studied to assess the effect of

starting over on efficiency.

"".iOther Seq•e l. Cleal SeqeuentId Methodq for other per cent points

and with other accuracies deserve study.
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j. Investigation of boundaries. Section 6 contains some informal hunches as to the

permanent limitations of staircase methods. If possible, these hunches should be

replaced by knowledge. It is probable that detailed information about many more

individual methods is needed before a general study can be profitably completed.

k. Differential effects of interval size. In this report, effects of interval size

have been assessed by calculating means for, say, three interval sizes, drawing a

curve and determining a correction graphically. As noted in Section 8 it is easy to

compute a differential correction numerically (i. e., one which holds for S between

so and .o + dS ), and it seems likely that the use of such tangential estimates

would help in understanding the situation and in solving problem _.

1. Variable length-accuracy. A problem of both practical and theoretical interest

is posed by the methods, such as the NPF, which involve a variable number of trials.

When few trials are required, is the result more or less accurate than on the'aver-

age?

m. Delayed Staircase Methods. In many cases of sensitivity testing, e. g., heat

stability, it is necessary to wait a substantial time for the conclusion of the

test. Delayed staircase methods would be applicable, e. g., and Up and Down Method

where the level for the N + 11th trial depended on the result of the Nth trial.

n. Vayiable number of trials per level. What would be the characteristics of Cas-

cade Methods in which the number of trials per level increased by a certain number

for aaln V.4''&c i rv,.l- -,t ý,.,¾4 oh toqt irao nernljr-reci
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III. COMPUTATION

16i Introduction.

The quantities associated with the distribution of a sensitivity test result

which are relevant to our analysis are (1) the expected level reported, (2) the

variance of the reported level, (3) the average number of trials, and (4) the aver-

age number of explosions. In many cases, of course, other quantities were also

computed.

17. General Assumptions.

All computations are based on the assumptior that the sensitivity curve is a

cumulative normal curve. The natural scale of measurement of the levels is in terms

of the standard deviation of this normal distribution. We have modified this assump-

tion to the extent that at -3.0 (and lower) the probability of an explosion is taken

to be zero and at +3.0 (and higher) the probability of an explosion is taken to be

unity. For our purposes this modification is unimportant, for relatively few trials

in any test procedure would be made at -3 or lower, or at +3 or higher, and hence,

the distributions of test procedures with the modification of the cumulative normal

curve differs little from that without the modification. The computations are

simplified by assuming a finite range. We shall let p x be the probability of an

explosion on level x, and qx be the probability of a non-explosion (= 1 -px) .

Most of the test procedures require starting the test at a level where the

probability of an explosion (or in some cases, of a non-explosion) is nearly zero.

In our computations we have generally started at -2.5 (or +2.5).

18. Single Exlosion Design.

Perhaps the simplest design to treat is the Single Explosion Design with single

trials on a level. The probability of the explosion occurring at level x is the

product of the probability of a trial being made at x, and the probability that a

trial at level x results in an explosion. For example, the probability of the ex-

posion occurring at -2.5 is . 00621, at -2.0 -1 (, -. 00621) .022 5 = .02261, and

at -1.5 is (1 -. 00621 ) (11 -. 02275). .06681 r.06 4 88. Table 27 gives the pro-

bability, P(x), of the level at which the explosion occurs l•tih step sizes of .rd.
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TABLE 27

Probability Distribution for the

Single Explosion Design

Level Px qx Probability, P(x)

-2.5 .00621 .99379 .0o6

-2.0 .02275 .97725 .025
-1.5 .06681 .95319 065

-1.0 .15866 W831+4 .144

-0.5 .30854 .69146 .235

0.0 .50000 .50000 .264

0.5 .69146 .30854 .182

1.0 .84134 .15866 .068

1.5 .93319 .06681 .012

2.0 .97725 .02275 .001

2.5 .99579 .00621 .000

From this distribution one computes the expected value (-.2+10) and the variance

(.565) of the reported level, where E(x) = x P(x) and 0-'2  Z x2p(x) - [E(x)1 2 .
X x

Because the number of trials depends only on where the explosions occur, the average

number of trials, T(x), is a simple function of the expected level, namely

T(x) = 2.5 +

In this case it is 5.518. The average number of explosions is one. From these four

numbers one can easily compute the accuracy per trial (.321), the accuracy per ex-

plosion (1.77), and the weighted accuracy (1.14).

The computation is slightly more complicated in case one makes 2 trials at each

level instead of one. Then the probability of at least one explosion at a level x
2i

is P 2 (x) = q - qx, where qx is the probability of a non-explosion in a trial at level

x. This is the same as the probability that one obtains at least one explosion out

of two trials where the second trial is made regardless of whether the first is an

explosion. Then the probabIlity, Piz) of the explosion occurrin; at x Is
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P2(x)'Q2(x), where Q2 (x) is the probability that a trial is made on level x. For

example, the probability of an explosion in 2 trials at -2.5 is I - (.99379)2 =

2.01258 and the probability of an explosion out of 2 trials at -2.0 is 1 - (.97725)

.04498. Hence, the probability of the explosion in a test occurring at -2.5 is

.01258 and at -2.0 is .0o498-(1-.01258) = .04442. Table 28 gives the probabilities

for the explosion levels.

TABLE 28

Probability Distribution for the Single Explosion

Method with 2 Trials on a Level

2 2Level P2 (x), or I-qx qý Probability P2 (x)*

-2.5 .01238 .98762 .012

-2.0 .04498 .95502 .045
-1.5 .12916 .87084 .122

-1.0 .29215 .70785 .240

-0.5 .52188 .47812 .303

0.0 .75000 .25000 .209
0.5 .90g480 .09520 .063
1.0 .97483 .02517 .006

1.5 .99554 .00446 .000

2.0 .99948 .00052 .000

2.5 .99996 .00004 .000

* The probabilities were rounded to 3 decimal places and then adjusted to

sum to one.
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The expected level is -. 657 and the variance is .435. The average number of trials,

T,(x), can be thought of as the sum of the average number of trials on the level of

the explosion and the average number of trials on the levels without the explosion.

The latter is related to the average level by the formula

Evaluating this gives 7.37-2. The number of trials on the level of the explosion is

one or two depending on whether or not the explosion occurs on the first or second

trial. This average is therefore

1. ZI + 2qx
L2 P 2 (x).(l'Px + 2 qx Px (1-Q> = i P2 (x) 1+ 2x x +qx

Evaluating this formula gives 1.406.

The sum of these two numbers (7.372 + 1.406 = 8.778) is the average number of

trials. The average number of explosions is one. The accuracy per trial is .262.,

the accuracy per explosion is 2.30, and the weighted accuracy is 1 .22.

For a Single Explosion Design with k trials per level the computations are made

in a similar fashion. Here the probability of at least one explosion out of k

k
trials at a level x is 1 - = Pk(X). Then the probability of obtaining the ex-

plosion at x is ~c (x).- Qk(x) = Pk(x), where Qk(x) is the probability that trials

are made on level x. The expected number of trials at the level of the explosion is

Px ) (1 -p -xp '2 + ~x-p) _k

1I + 2qx + + kqk-1 l

xPI'C(x )
1 + qx+ ... +

• This can also be written as

k+1 k
k.q +1x x (k 1) qx.

x p k
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This formula is easy to use if the same computation is done for successive values

of k, for then the numerators and denominators are built up step by step.

The expected number of trials at the levels where there is no explosion is

simply

k E(x) 2.5

The sum of this and the preceding number is the average number of trials, Tk(x).

The average number of explosions is again one. The accuiracy per trial, accuracy

per explosion, and weighted accuracy follow easily from the above computations.

For this Single Explosion Design there is no possibility of making an ad-

justment (for fixed 6) to minimize the variance of the reported level since we end

the test with only one piece of information, namely the level of the first explosion.

However, we can devise an adjustment to make the average reported final level nearly

constant with respect to changes in S within certain limits. The procedure for

doing this is discussed in Sections 8 and 10.

19. Cascade Methods.

As an example of the computations involved in the Cascade Methods let us con-

sider the particular method which consists of a Single Explosion Design (one trial

at each level) followed by another Single Explosion Design which starts three

levels below the level at which the first explosion occurs (k = 1, m = 1, h = 3).

The first run starts at -2.5 and ends at level x. The second run starts at level

x-i1.5 ( 6 .5) and ends at level y- The probability of an explosion at X starting

at a level, say -1 .0, is written -1 .0 P(y) (then P(x) as used previously would be

written -2. P(x)). Thus

- 1.0P(y) = q_.-.0q_. 5'''qy-.S 'py

Table 29 gives the probability of ending at level X for starting points from -2.5

to +3.0. Note that, since the probability of an explosion below level -2.5 is 0,

if one starts the second run lower than -2.5, the probability that the run results

in an explosion at level x is _.P(y)
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TAB3LE 29

Probability Distribution for a Single Explosion

Run Starting at Various Levels

(one trial on each level)

Each Entry Represents wP(y)

-2.5 -2.0 -1.5 -1.0 -. 5 0 .5 1.0 1.5 2.0 2.5 3.0

-2.5 .oo6p

-2.0 .0226 .0226

-1.5 .o649 .o653 .0668

-1.0 .1438 .11447 .1481 .1587

-0.5 .2353 .2367 .2422 .2596 .3085

0.0 .2636 .2653 .2714 .2909 .3457 .5000

0.5 .1823 .1834 .1877 .2011 .2391 .3457 .6915

1.0 .0684 .0689 .0705 .0755 .0897 .1298 .2596 .8413

1.5 .0120 .0121 .0124 .0133 .0158 .0228. .0457 .1481 .. 9332

2.0 .0009 .0009 .0009 .0009 .0011 .0016 .0032 .0104 .0653 .9772

2.5 0 0 0 0 0 0 .0001 .0002 .0015 .0226 .9938

3.0 0 0 0 0 0 0 0 0 0 .0001 .0062 1.0000

* The factors Px and qx used in computing this table will be found in Table 27.

As described in the Technical Part, Section 8, the reported level is to be a

function of the difference of the two end levels (i. e., of y-x = r). It proves to

be expedient to first compute a table in which the columns show the probabilities,

P(x,y), for a constant value of y, of the first run ending at levels of x from

-2.5 to +3.0 and the second run ending at the particular level, z. For example, the

first column is obtained by computing

P(-2.5,y) 2 5 P(-2.5)-4.0P(7) = 2. 5 P(-2.5)-2. 5Py)
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for y -2.5, -2.0, ., + 3P.0, and the fifth column by computing

P(-.5,y) = -2.5P(-.5)-2.oP(y)

for the same y values as above. Sunming the rows gives the probability, P(y), of

ending at level y. Table 30 gives the values of P(x,y) for the Cascade Method

k= 1, m= 1, h- 5.

TABLE 30

Probability Distribution for the Cascade Design,

k = 1, m= 1, h = 3

Each Entry Represents the Probability

of the First Run Ending at Level x,
and the Second Run Ending
at Level X, i. e., P(x,y)

End Level End Level of the First Run, x
of the
Second
Run, .y P(y) -2.5 -2.0 -1.5 --1.0 -.5 0 .5 1.0 1.5 2.0

-2.5 .0014 0 .0001 .0004 .0009 p

-2.0 .0107 .0001 .0005 .0015 .0032 .0054
-1.5 .0484 .0004 .0015 .0042 .o093 .0154 .0176

-1.0 .1361 .0009 .0032 .0093 .0207 .0.341 .0390 .0289

-0.5 .2438 .0015 .0053 .0153 .0338 .0557 .0638 .0473 .0211
0.0 .2791 .oo16 .0o6o .0171 .0379 .o624 .0715 .0530 .0236 .0060

0.5 .1937 .0011 .oo41 .0118 .0262 .0432 .0495 .0367 .o164 .0041 .o0o6

1.0 .0726 .o0u4 .0015 o0044 .oo98 .0162 .0186 .o136 oo061 .0016 .0002

1.5 .0128 .0001 .0003 .0008 .0017 .0028 .0053 .0024 .0011 .0003 0

2.0 .0009 0 0 .0001 .0001 .0002 .0002 .0002 .0001 0 0

2.5 0 0 0 0 0 0 0 0 0 0 0

3.0 0 0 0 0 0 0 0 0 0 0
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Another table is then constructed by rearranging the first table so that the

columns show the probabilities P(x,r) for a given r and varying values of x. Sum-

ming the columns gives P(r). The values of P(x,r) and P(r) are given in Table 31.

Reference to Section 8 on the possible adjustments shows that we can modify the

reported level, for each value of r, so that the average reported level is the

same regardless of the value of r. Under these circumstances the variance of the

reported level will be equal to the sum of the x variances for each value of r,

each variance being weighted by the appropiiat& probability. That is,

Variance = P(r) x Pxr)
r 2~) ( P(r)/

For k -, m = 1, and h = 3, the variance is .2921.

The number of trials required to reach a final level, y, does not depend on the

end point of the first run. This follows from the fact that the number of trials

in the first run is

1 * x--(-25 + 1

and in the second run is

If we add these two together we eliminate x, and obtain for the total number of

trials (i. e., for fixed X)

2._5 + h + 2.

From this expression, we obtain the average number of trials to be

SP(y) Z> 2.5 + h + 2
y6

In the case k = -, m = 1, h = 3, the average number of trials is 9.6650. The number

of explosions is two. It follows that the accuracy per trial is .35i, the accuracy

per explosion is 1.71, and the weighted accuracy is 1.15.
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TABLE 31

Probability Distribution for the Cascade Design,

k = 1, m = 1, h = 3

Each Entry Represents the Probability

of the First Run Ending at Level x,

and the Second Run Ending

at Level x+r, i. e., P(xr)

End Lovel.
of the Value of r
First --

Run, x_ r-1.5 -1.0 -. 5 0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4,o

-2.5 .0001 .0004 .0009 .0015 .0016 .0011 .0004 .0001

-2.0 .0001 .0005 .0015 .0032 .0053 .0060 .0041 .0015 .0003

-1.5 .0004 .0015 .0042 .0093 .0153 .0171 0118 .00o44 .0008 .0001

-1.0 .0009 .0032 .0093 .0207 .0338 .0379 .0262 .0098 .0017 .0001

-0.5 .0054 .0154 .0341 .0557 .0624 o0432 .0162 .0028 .0002

0.0 .0176 ,0390 ,o638 .0715 .0495 .0186 .0033 .0002

0.5 .0289 .0473 .0530 .0367 .0138 .0024 .0002

1.0 .0211 .0236 .0164 .oo61 .0011 .0001

1.5 .0060 .0041 .0016 .0003

2.0 .0006 .0002

2,5 0 0

3.0 0

P(r) .0805 .1332 .1798 .1957 .1715 .1211 .0692 .0321 .0120 .0035 .0008 .0001

' This Table is obtained by a rearrangement of Table 30.

The corrections to be made to the result of each test in order to minimize the

variance of this reporte-d levo and to--- •ak it.9 expected value indpendent of changes

in S are discussed in Sections 8 and 10.
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Now let us consider the siutation where k trials are made on each level for

the first run and m trials are made on each level for the second run (h given).

Then, as described in the k m, c 1 case, we can compute the probability

Pkm (x,y) of the first run ending on level x and the second run ending on level Y.

If we sum these probabilities (for a fixed x) over all values of y we obtain Pk(x),

and if we sum them (for fixed x) over all values of x we obtain Pk,m(y). Finally,

we can sum them for all values of X and x for which (y-x) is a constant r and so

obtain Pk,m(Y-x) = P.,i(). Using Pk(X,r) we can compute the minimum variance of

the average reported level, the computations proceeding as in the k = 1, m 1 case.

The average number of trials required to obtain particular values of x and x

is equal to the sum of the average number of trials required to reach level x plus

the average number of trials required to go from level x to x. These two ex-

pressions are, from the section on the Single Explosion Design and the earlier re-

sults of this section, equal to

k x +i5 + + 2qx + ... + kqk-i
r h + qx + + .. + k1

-
+ 

r-. i

+ qy + Y q+-1

Consequently the average number of trials is simply

[k X1.., + .. + +kqx -

Pk,km(Xy) 1 x
x~y + qX + qxk 1

+ m XZ-x- 4 1_ + 2q. + ... mqmj
7• + q y + . + qlym-

+o
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The best method for computing this quantity will depend upon the values of k and

M, and the previous computations which have been made. For example, we find that when

I= m =I, k( ) + m(b (X + h). Moreover the sum of the other

two terms is 2 so that the above expression for the average number of trials re-

duces to

Y' P1,1 (y) . + h + 2

It will usually be advantageous, since we have to introduce (y-x) in order to com-
pute the variance, to write m(X 6) as m( + h) and use the probabilities

Pk,m(r) to compute this portion of the expression.

The number of explosions is always 2 so we can now readily compute accuracy per

trial, accuracy per explosion, and weighted accuracy.

20. Single Explosion plus m Trials.

This is an extension of the Single Explosion Design (Section 18). The simplest

case (k = 1, m = 1) is to make single trials on successively higher levels until an

explosion occurs at level x and then to make one more trial at level x-hS . Start-

ing at -2.5 the probability of an explosion at level x and an expldsion at level

x-hh is expressed by

P(x) Px-hh

where P(x) is the same as _2.,P(x) of the last section. Similarly the probability

of an explosion at level x and of a non-explosion at level x-h$ is given by

P(x) qx-h '

As an example consider the-probability of obtaining an explosion on the run up

cst level -1.5 and another explosion at level -1.0. (h = -1, S = .5). P(-1.5) is

.06t88 and pI .0 is .15866, so the probability is .06488 ' .15866 = .010. The pro-

bability of obtaining an explosion at level -1 .5 and a non-explosion at level -1 .0

A1
J1
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is .06488 •°841 3 4 = .055. in this manner a distribution is computed showing the

pr•obailit -,- th -_i• rgle' trialls rs1..... E- 31"n• ar.n cp.,son, at- !Ga ... cn th one - ..

additional trial resulting in an explosion at level x-hf . Similarly a distribu-

tion is computed for the probability of a non-explosion at level x-h6 . Table 32

shows these values for h = and • - .5.

TAMLE 32

Probability Distributions for a Single Explosion

plus m Trials Design

(k= 1, m- 1, h- -1)

Level x Probability of an explosion Probability of an explosion
at x, and at x + .5 at x, and of a non-explosion

at x + .5

-2.5 0 .006

-2.0 .002 .021

-1.5 .010 .055

-1.0 .0o44.1 .100

-0.5 .117 .118

0.0 .182 .082

0..5 .155 .029

1.0 o063 .005

1.5 .012 0

2.0 .001 0

2.5 0 0

The expected level of the x's in the cases resulting in explosions at level

x-hS is determined by evaluating

xF x P(x )Px:h4_.
x P(x)Px-hS

For our exv•i-ple it is .065.
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The expected level of the x's in the cases resulting in non-explosions at level

x-hC is determined by evaluating

x P(x) qx-hS
X

SP(x ) qx-Mh
x

For our example it is -.6'y1.

As in the preceding section on Cascade Methods, we are going to adjust the final

level so that the average reported level of those tests which end in an explosion

is the same as the average reported level for the tests which end in a non-explosion.

Under these circumstances the variance of the reported level is

7 2 PXx Px~ Z (x) p x-h6)
r x P(x) Px-h$

xhS P(x) rx-hx

The variance in the particular example we have been discussing is .A44.

The expected number of trials required will be one more than the expected number

of trials required in the Single Explosion Design (one trial on a level), that is

ELx) + 2.5=
+ +2.

For 6 .5 and h = -b , this value is 6.518. Bimilarly the average number of ex-

plosions is

1 +7 P(x) Px-hS
x
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or 1.584. Consequently the accuracy per trial is .353, the accuracy per explosion

is 1.45, and the weighted accuracy is 1 .03.

Now let us consider the case where we make k trials on a level at successively

higher levels until an explosion results, and then take trials on level x-hS

either until an explosion occurs or m non-explosions. The probability is Pk(x)

that we obtain our first explosion on level x on the up sequence, qx>hg that we
m

obtain m non-explosions on level x-hA and 1-qm h• that we obtain an explosion on

lovol x-hA Consequently the probability is

P (X
k (xqx -h

that we obtain our first explosion on level x and no explosions on level x-h6 , and

Pk(x) * [1=qxh 6 ]

that we obtain our first explosion on level x and an explosion on level x-h$

The variance in this case is computed as in the case where k = 1, m = 1 with
Pk (X ) fo m) qx h n k x 1 o

the substitution of Pkx)for () and s 1-hs ] for

P(x) Px-h5 "

The average number of trials required is equal to

[ i-I Mqh]

Tk(x) + 7 Pk(X) I qx-h8 Px-hS + mlsh *x I1I

where Tk(x) is defined in Section 18.

• This expression is readily computed if we are dealing with successively in-

creasing values of m.
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This expression can also be written as

Tk(X) + -q PkhS
xP x Px -hS

21. NPF Inverted Method.

Tn the NPF Inverted Method one makies F sing½e trial. at successively higher levels

until an explosion occurs at level x, and then at level x-6 one starts making

three trials on a level at successively lower levels until all three trials are non-

explosions. (One stops testing at a level as soon as an explosion occurs and starts

again at the next lower level.) The run up starts at a level where the probability

of an explosion is almost zero. For S = .5 this would be at -2.5.

The probability of the first run ending at x is P(x). The probability of the

second run ending at x, if one starts at x-- , is the probability that there is an

explosion at each of the levels x-& , x-26 , x-36 , ... y +6 , and that there are

three non-explosions at y. This probability is (1m-q_) (I-q_ 2 6 )... y1-+.- _

Then this product times the probability of an explosion at x is denoted by Q(x,y).

For example, if x = 1.0, P(x) = .144 from Table 27 and Q(-1.o, -2.0) =

.144 * (1-(.95319)3) - (.97725)3 = .02514. A table is then computed in which the

columns show the probability, Q(x,y), of the run down ending at varying levels of x

and the run up ending at a given x. The rows show the probabilities, Q(x,y), of the

run up ending at varying levels of x and the run down ending at a given Y. Table 33

gives the values of Q(x,y). Summing the rows gives the probability of ending at _,

Q(y), regardless of where the run up ends. The table is rearranged, so the columns

are the probabilities Q(y,r), for a constant difference in end levels (x-y = r), and

for varying values of X. Summing the columns gives the probabilities, Q(r), of r,

regardless of the final end level. Q(y,r) and Q(r) are given in Table 34.

The expected end level of the second ru Etyir), is computed for each value of

r by evaluating

SyQ(y,r)
E(yir)- • Q( r
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TABLt 33

Probability Distribution for the NPFI Method

Each Entry* Represents the Probability

of the Run up Ending at Level x,

and the Run Down Ending

at Level y, Q(x,y)

End
Level I
of Run End Level of the Run up, x

Down,
-1.5 -1.0 -.5 0 .5 1.0 1.5 2.0

-3.0 .00679 .00621 .00042 .00008 .00003 .00002 .00002 .00001

-2.5 .03100 .02219 .00425 .00176 .00117 .00088 .00053 .00019 .00003

-2.0 .12562 .06055 .02514 .01664 .01248 .00755 .00275 .00048 .00003
-1.5 .30246 .11685 .07753 .05800 .03509 .01i79 .00224 .00016

-1.0 .33630 .14011 .10i5o9 .06358 .02317 .0o406 .00028

-0.5 .16270 .08715 .05275 .01921 .00337 .00023

0.0 .05264 .02279 .00830 .00145 .00010

0.5 .00238 .00201 .00035 .00002

1.0 .00005 .00005

* For x = 2.5 the entries for y = -1.0 and -0.5 are both .00001 and are zero

for all other values of y.
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TABLE. 34

Probability Distribution for the NPFI Method

Each Entry Represents the Probability

of the Run Down Ending at Level y,

and the Run Up Ending at

Level y+r, Q(y,r)

End
Level Value of r
of Run
Down, _ .5 1.0 1 .5 2.0 2.5 3.0 3.5 4.0

-3.0 .00621 .00042 .00008 .00003 .00002 .00002 .00001

-2.5 .02219 .00425 .o00176 .00117 .00088 .00053 .00019 .00003

-2.0 .o6O55 .02514 .01664 .01248 .00755 .00275 .00048 .00003

-1.5 .11685 .07733 .o5800 .03509 .01279 .00224 .00016

-1.0 .1iOil .10509 .06358 .02317 .00406 .00028 .00001

-0.5 .08715 .05273 .01921 .00337 .00023 .00001

0.0 .02279 .00830 .00145 .00010

0.5 .00201 .00035 .00002

1.0 .00005

Q(r) .45791 .27361 .16074 .07541 .02553 .00583 .oo085 .00006

Summing these expected end levels over r gives for the average expected end level

E~y) = Q(r) . E(yir)
r

In accordance with our procedure for correcting y so that its variance is a minimum,

the variance of the reported level is

6 Q(r) [Y Q22 Lrl<



The average number of trials is the sum of the average number of trials made

to reach x sad the average number to reach _.• The average number made to reach x

is

The number of trials on each level of the run down is one, two or three depending

upon whether the first or second trial is an explosion. Conuoquontly the expected

number of trials on a level X, given that we actually make trials on this level,

is equal to

1p Y + 2*qy py + 5q (qy+py)

Now the probability that we test on level X, and that the run up ends on level x,

is

~4x

From these two expressions we obtain the average number of trials required on the

run down as

'Py +2qPy7 + 3; (q +

-3

7 1yqy 3

Il
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Thus the average number of trials required for the NPF Inverted is

oX2 TI ' . I-q5

-+1,) .kNX) + ( fx yY

The correction for variance and interval size for this method are made In a

fashion similar to that described in Sections 8 and 10.

The number of explosions for the run up is one, and for the run down it is one

for each level above the final one. This is

x -

The average number of explosions is then

r Sr 6 •Qr

Having determined the variance, trials and explosions, the three accuracy functions

are easily found.

22. The Picatinn Method.

The computations for the Picatinny Method are similar to those for the Single

Explosion Designs. The Picatinny computations have been done with five decimal place

accuracy. With one standardization the test starts at -4.0. Hence the usual trunca-

tion of the cumulative normal distribution was not made. For example, the proba-

bility of 10 successive non-explosions at -4.0 is .99970. The same probabilities

were imed for the procedure starting at +.5. The two distributions are given in

Table 35.
0
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TABLE 35

Probability Distribution for the Picatinmy Method

Start at Start at
-4,.o +.5

-4.0 o0003o .00000 0

-3.5 .00230 .00007

-3.0 .01338 .00490

-2.5 0.5943 .07722

-2.0 .19007 .51762
-1.5 .36664 .40115

-1.o .30251 .17310

-0.5 .06374 .02495

0.0 .00163 .00098

o0.5 .00000 .00001

To simplify the computations for the procedure starting at -4.0, the set of 10

non-explosions at the lower level was not required if the explosion occurred at

-4.0. Similarly in the case of starting at +.5 the explosion was not required if

the set of 10 non-explosions occurred at +.5. The error caused by these simplifi-

cations cannot be more than .03 per cent and .001 per cent, respectively.

In this case the average number of trials was computed by summing the expected

number on each level (regardless of whether an explosion results). The expected

number on, level x (when trials are made on that level) is

10 _ p1 0 (x)

-qx Px

If the test starts at -4.0, the expected number on level x is

q 0 (-4.o) qlo(-4.o+9 ) ... q1 o(X,-6 p1 .(x)
10 PX
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where q 1 0 (y) = - p 1 0 (y) is the probability that no explosion occurs in 10 trials

at level • If the test starts at +.5, the expected number of trials on level x is

P 1 0 (+.5) P 1 0 (+.5- ) ... po0 (x)

Px

The number of explosions is one when the tests starts at -4.0. In the other case

it is

.• - E(x) +

(5.261 for 6 = .5).

23. Sequential Method.

In this section we shall show how to obtain the characteristics of a sequential

plan set up as described in Section 11. In computing the OC, average number of

trials, etc., it has been found inadvisable tc use the approximation given by Wald.

This arises primarily from the fact that we are truncating, but it is also true

that some of his approximations, especially for average sample size, do not seem to

be sufficiently accurate in the range in which we choose to take pl, P2, cK and 2 .

To make the situation clearer, let us consider a specific case, namely p, = .08,

P 2 - "16,Q=fi) = .25, truncation at 13 trials. Using the formulas of Section 13,

the sequences given in Table 36 for un and dn are obtained.
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TABLE 36

Critical Number of Explosions as a

Function of Trial Number

n Un dn

2 -2

3 2

4 2
5 -2

6 -- (3)**

7 5

8 3

9 3

10 5
11 -

12 - 3

13 0 3

* - means that no move can be made at these positions.

** It is impossible to move down on trial 6 since one would need to have had

2 explosions at some preceding trial, and the move down would have been

made then.

Now let us assume that we are testing at level x, the probability of an ex-

plosion being px and that of a non-explosioni, qx(=l-px)• The quanitities which are

necessary in order to carry out an analysis are:

(i). p(x,& ), the probability of moving to levei x÷&

(2). p(x,-& ), the probability of moving to level x-A,

(3). p(x,o), the probability of no move from level x,

(4). The average number of trials and the average number of explosions, given

that a particular one of the above results Is obtained, namely T(x, 6

T ), Tkx,o), D.x, S ), D(xcC ) and D(x,oJ.
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13Tx, )=5 dD, )=0
It is obvious from Table 36 that p(x, 6 q T(x, A 13 and D)(x, o.

However, the remainder of the expressions do not follow so readily, For example,

the probability that we make a decision to move from x to x-S on the 9th trial

is equal to K(9,-) 6 p x, where K(9,3) is the number of ways of obtaining 6 non-

explosions and 3 explosions in 9 trials so that no decision to move down has been

made before nine trials. In order to obtain the values of the K factors, sometimes

called path-coefficients, it is convenient to consider Table 57.

TABLE 37

Path Coefficients for o- (=t )=.25, p1 =.08, p 2t=. 1 6

Number of Explosions

Trial No. L -0 1 2 3 4

1 1 1

2 1 2 1

5 1 2

4 14 3-

5 5 4

6 1 6 5

7 1 7 11

8 a 8 18 11

9 1 9 26 18

10 1 10 35 26'

1 1 11 45 35

12 1 12 56 k

13 ± ( 564
14 13 81 68

15 13 94 149 68

16 13 107 243 149

17 13 120 350 243

18 13 135 470

19 13 146 603

20 - 115 1759 74960

0
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This table is built up by successive addition, and each entry represents the

number of ways of obtaining a definite number of explosions (o, 1, 2, 3, or 4) out

of a fixed number of trials. If a test on a particular level results in a combina-

tion of trials and explosions whose position in the table is underlined, then a,

decision is made to either move up or down. Consequently, the numbers underlined are

the required path coefficients, and these numbers are not used in building up that

portion of the table lying below their particular position. For example, K(8,2) =

K(7,1 ) + K(7,2) while K(8,3) = K(.7,2) since on all tests having 5 explosions out of

7 trials, we must move down one level, and no more trials are necessary. For pur-

poses of illustration this table has been extended beyond 15 trials by making use

of the extension of Table 36.

From this table of path-coefficients one may readily compute

p(x,) qx
12 11 2

p(x,o) = 13 qx Px + 68 qx Px

2 2 2 2 3 2
p(x,- ) = Px + 2 qx Px + 3%ix + 4qx Pi

+ 5qx pX + 1liq x px + 18q p+ 26q4X px

8 -3 9 3 610 3
+ 35% px + 4ýpx + 5q XpýV ,,a x

Values of p(x, S ), p(x,o), and p(x,- 6 ) are gt1ven in Table 58.
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TABLE 38

Values for p(x,S ), p(x,o), and p(x,-.5

(Interval Size = .5)")

x p(x,S) p(x,o) p(x,-&)

-3.0 1.000000 0 0
-2.5 .922210 .077364 .000426

-2.0 .jf41437 .251708 .006876

-1.5 .407033 .520664 .072307

-1.0 .1-05842 .515402 .378818

-0.5 .008260 .159750 .831983

0.0 .000122 .009887 .989995

The required mean values for number of trials and number of explosions can be

readily obtained by use of the separate terms making up p(x,S ), p(x,o) and

p(x,-6).. Thus

p(x,o)'D(x,o) = 1 (1q x1 p22)

D(x, .) = 0
22 2q 2 3P2

p(x,-6 )D(x,-S ) 2 (pX + 2q p2 + 2 2q p q+ Px3 )

4 1~ 3 ~ 5 3 6 3 7~ p3
+ 3 (5qx PX + 1+ 1Sqxl Px + 26qx7 PX

8 -
+ 355q 0 PX + 1t5q 9ý p3' + 56q'0 pfl

T(x,o) 1 15

T(x, 6 ) = 1.5
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2 2 2 P5

p(x,&) T(x,-5 ) 2(px) + 3(2q. Xpx) + 4(3q; px + 5(4q px)

(5qx4 • ) 8(11qx5 P+ 7 3 (+
q + q3) + 13(6 q 1 0 p3 ).

xx x11(05% PX3) + 12 (45%9 pX) +356 P

Let us now assume that we start the sequential testing at level s. Then the

probability that our recorded level is x (a level on which trials are made) is

P(xis), where

P(xis) = p(s,-S )-p(s-6,4)...p(x+ S,- S).p(x,o)

where x is less than s. If x is equal to s_, we have

P(xls) = p(s,o),

and if x is greater than s.

P(xjs) = p(s, S )-p(s+6 , 6 )...p(x- 6 ).p(x,o).

Similarly, the probability that the recorded level is x+.5 6, given that sequential

testing is started at level s, is

P(x+.58 Is) = p(s,-&) p(s-6,-8 )...p(x+ 5,-6) p(x, 5) x<s

P(x+.5S Is) = p(s,6 ) p(s+6,-b) x=s

P(x+. 5 Is) = p(s, 6 ) p(s+' , A )...p(x, 6 ) p(x+ S ,- - ) x>s

Table 39 gives the values of these various probabilities for the particular example

which we are considering. The values given for -5.0, -2.5, -2.0, etc. refer to

P(xis) while those given for -2.75, -2.2), - etc. refer to P(x+.5& is), since

S is equal to .5.

Now if we precede the sequential testling by a Single Explosion (two trials on a

level) Design starting at -2.56', the probability that we start sequential testing

on level s is Pi(s). The comnutatlon of P-(s) has been explained In Section ,8,
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TABLE 39

Probability Distribution for the Sequential Method

(dV =1 P-- .25, P1 = .08, P 2 = .16)

Truncation at 13 Trials, Interval Size of .5cd

Each Entry Represents the Probability that a

Particular Level will be Recorded if

Sequential Testing Starts at Level s

0 Level at which Sequential Method is Started, s

Recorded
Level -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5

-3.00 0 0 0 0 0 0 0

-2.75 ,000426 .000003 0 0 0 0 0

-2.50 .077364 .000532 .000038 .000015 .000012 .000012 .000012

-2.25 ,006341 o.06341 .000458- .000173 .0001145 .000143 .000145

-2.00 .232128 .251708 .018200 .006895 .005736 .005679 .005679

-1.75 .049441 .053611 .053611 .020309 o016897 .016728 .016728

-1.50 .356010 .386040 .520664 .197237 .164098 .162456 .162456

-1.25 .105430 .114323 .154191 .154191 .128285 .127001 .127001

-1.00 .143443 .155543 .209786 .515402 .428806 .424515 .424515

-0.75 .024508 .026575 .035843 .088059 .088059 .087178 .087178

-0.50 .0o47o6 .005103 0oo6882 o0169o8 .159750 .158152 .158152

-0.25 .000241 .000261 .000352 o0oo865 .0oo8177 .008177 .008177

-0.00 .000002 .000003 .000004 .000009 .000o82 0oo9887 .009887

Consequently the probability that the final recorded level is x is given by

SV•(s) P(xls),

where s takes on all values for which PThs) 2 o. Similarly the probability that the

ftinal recorded level is x+.5A Is

'SP2(s)'}(X ' 'S S),
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The values of these probabilities are given in Table 40.

TABLE 40

Probability Distribution for the Sequential

Testing Combined with a Single Explosion

(2 trials on a. level) Design

Recorded Level Probability

-3,00 .000000

-2.75 .000005

-2,50 .000967

-2.25 .000536

-2.00 .021059

-1.75 .024154

-1.50 .227164

-1.25 .136417

-1.00 .406228

-0.75 .077976

-0.50 .097708

-0.25 o005024

-0.00 .002776

0

Finally, the expected value of the estimated percentage point becomes

Aty [x Zia(S).P(xfIs) + (x-r.5 & ) E P2(S P(x+-56 is]

The variance of the estimated percentage point can. be calculated by the use of the

same probabilities and is equal to

[X [x2 P (s) ?(x!s) + (x+.56 7)P2 (5 ) F(x-+.r iS
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The treatment of average number of trials and average number of explosions can

be explained in a similar fashion. For example, if we start sequential testing alt

level s_ and record level x (where x is less than o), the total average number of

trials required for this will be

T(xIs) = T(u,- ) + T(s-,-) ÷ ... + T(x+&-•) S T(x,o)

In general, we obtain the total ave~rge number of trials corresponding to P(x 1s) or

P(x+.) 6 Is), by substituting T( ) for p( ) and replacing the multiplications by

additions. T(x,o), T(x, 5 ) and T(x,- 4) are given in Table 41, while T(xls) and

T(x+.& I~s) for the values of x and s pertinent to our example are given in Table

42. Table 43 gives D,(x,o), D(x,-& ) and D,(x, . ); Table 44 gives D(xls) and

D(x+.5 8 Is).

Denote by T 2 (s) the average number of trials required when we obtain the first

explosion on level a by use of a Single Explosion (two trials on a level) Design

starting at -2.5. Then the total average number of trials required when sequential

testing is started on level s is

T 2(s) +~ Tlxls).

Consequently the total average number of trials required for the sequential method

Is

+ (T2(s + T(xI..s) is))-P 2 (s)P(s+.5 Is)

9 x

A similar expression ia obtained for the average number of explosions by replacing

T( ) by D( ). Note that in thlso instance D (s) = 1.
2j As explained in Section 11, no correction is needed in the Sequential Method

to m-nimize the variance of the average reported level or to adjust for chanpge in

the interval size •.1j
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TABLE 43

Values for D(x,li ), D(x,o) and D(x,-• )

(Interval Size .5&)

x D(x, ) D(x,o) D(x,- )

-3.0 0

-2.5 0 1 04 2.11

-2.0 0 1.13 2.28

-1.5 0 1.34 2.46

-1 .0 0 1 .66 2.52

-0.5 0 2.01 2.41

0.0 0 2.34 2.18

0.5 2.04

TABLE 44

Average Number of Explosions Required when

Sequential Testing Starts at Level s and

the Recorded Level is x or x+ .5S

Recorded Level, Level at which Sequential Testing is Started, E

x or X+ .56 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5

-3.00

-2.75 2.11 4.39 6.85 9.37 11.78 13.96 16.00

-2.50 1.04 3.32 5.78 8.30 10.71 12.89 14.93

-2.25 2.28 2.28 4.74 7.26 9.67 11.85 13.89

-2.00 1.13 1.13 3.59 6.11 8.52 10.70 12.74

-1.75 2.46 2.46 2.46 4.98 7.39 9.57 11.61

-1.50 1.34 1.34 1.34 3.86 6.27 8.45 10.49

-1.25 2.52 2.52 2.52 2.52 4.93 7.11 9.15

-1.00 1.66 1.66 1.66 1.66 4.07 6.25 8.29

-0.75 2.41 2.41 2.41 2.41 2.41 4.59 6.63

-0.50 2.01 2.01 2.01 2.01 2.01 4.19 6.23

-0.25 2.18 2.18 2.18 2.18 2.18 2.18 4.22

0.00 2.34 2.34 2.34 2.34 2.34 2.34 4.38
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24. The Pursuit Method.

Although this method has not been recommended for general use, it seems desir-

able to indicate the procedures which were used in determining its characteristics.

The primary reason for doing this is explained by the fact that it is extremely

difficult to calculate these characteristics exactly as was done for the other

methods, and one is forced to adopt an experimental procedure. This experimental

procedure has wide applicability and often allows one to obtain results which would

be impossible to realize in any other manner.

The essential feature of this procedure is that we conduct a large nnmber of

simulated sensitivity experiments, and then calculate the mean and variance of the

estimated percentage point from the resulting tests. This mean and variance are of

course subject to sampling error and so we do not obtain the exact value of the

population parameters. However, we can decrease this sampling error to any desired

value by conducting enough simulated tests. For our work on the Pursuit Method, a

sample of 40 tests was used in each instance.

In conducting such a simulated experiment we desire to determine, when testing

on a particular level, whether each trial is an explosion or non-explosion. Clearly

we could accomplish this by having, for this level, a box containing black and white

balls in the proper proportions and then d&-awing the balls from the box in a random

fashion. A white ball would represent an explosion and a black ball would represent

a non-explosion. As in the other portions of this report, the correct proportions

of balls for each level would be determined from the cumulative normal curve (see

Figure 1 ). Another method uses some results of such experiments that have been

tabulated in Sankhya (the Indian Journal of Statistics), Vol. I, pp. 303-328, and wie

can refer directly to these tables. These tables are of random numbers (drawn from

a normal distribution).

Ln order to illustrate the use of these tables, we shall conduct one test, con-] isting of 20 trials, for the determination of the 10 per cez.t poLnt. Let us sup-

T se that testIng is berg done onle"-el . 7 -lv -e.0 0, -, ad that

art a -50.A bloc-k of_ 20 v-alues selected, r-o the table 'nSaha
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is given below:

+0.157

-o.615

+0.736

4-1 .163

+0.371

-0.516

-0.536

+0.556
+0.399

+0.568

+0. 787

-0.705
+0.367

#0.120

+1.723

+2.616

+0.725
+0.021

-0.435

+1 . 105

Our only rule of procedure in using these values is that if testing is being done on

level x, then a value from the table less than x represents an explosion in this

trial and one greater than x represents a non-explosion. This is equivalent to the

assumption that the relation between per cent explosions and level of severity can

be represented by a cumulative normal curve. Now following the rules given in

Section 14, we obtain the following results for our sample of 20:

Results of an Experimental Test

with the Pursuit Method

-3.0 0
-2.5 o

-2.0 o

& -1.5 0
-1 .0 0 0 0 0 0

-0.5 o o o x o o o a

0.0 X 0 0

o represents a non-explosion

x represents an explosion

]
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We see that the per cent explosions on level -0.5 is 12 and on level -1 .o is 0.

Consequently, using linear interpolatioh, the level corresponding to the 1O per

cent point is -o.5 + (.16) (-0.5) = -. 58.

We can now repeat this as many times as desired, obtaining an estimate of the

10 per cent point each time, and then calculate the mean and the variance of this

estimate from this sample of values.
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